
Find the derivative of \[{{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{5}{2}}}\] with respect to x.
Answer
587.4k+ views
Hint: To find the derivative, consider the function as Y, and differentiate the function with respect to x. The exponent will come down and the remaining function will be differentiated with respect to x.
Complete step-by-step answer:
If f(x) = h(g(x)) then f (x) = h (g(x)) × g (x). In words: differentiate the 'outside' function, and then multiply by the derivative of the 'inside' function.
The formula for derivative of \[{{x}^{n}}=n\cdot {{x}^{n-1}}\].
First step let the given expression be Y
Differentiate both sides with respect to x.
\[\begin{align}
& Y={{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{5}{2}}} \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{5}{2}-1}}\cdot \left[ 3\dfrac{d}{dx}\left( {{x}^{2}} \right)-7\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 3 \right) \right] \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left[ 3\left( 2\cdot {{x}^{2-1}} \right)-7\left( 1 \right)+\left( 0 \right) \right] \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left[ 3\left( 2\cdot x \right)-7\cdot 1 \right] \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left( 6x-7 \right) \\
& \\
\end{align}\]
Thus, the derivative of \[{{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{5}{2}}}\] with respect to x is \[\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left( 6x-7 \right)\].
Note: The process of finding a derivative is called differentiation. The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change of x. Derivatives are a fundamental tool of calculus.
Complete step-by-step answer:
If f(x) = h(g(x)) then f (x) = h (g(x)) × g (x). In words: differentiate the 'outside' function, and then multiply by the derivative of the 'inside' function.
The formula for derivative of \[{{x}^{n}}=n\cdot {{x}^{n-1}}\].
First step let the given expression be Y
Differentiate both sides with respect to x.
\[\begin{align}
& Y={{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{5}{2}}} \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{5}{2}-1}}\cdot \left[ 3\dfrac{d}{dx}\left( {{x}^{2}} \right)-7\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 3 \right) \right] \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left[ 3\left( 2\cdot {{x}^{2-1}} \right)-7\left( 1 \right)+\left( 0 \right) \right] \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left[ 3\left( 2\cdot x \right)-7\cdot 1 \right] \\
& \dfrac{dY}{dx}=\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left( 6x-7 \right) \\
& \\
\end{align}\]
Thus, the derivative of \[{{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{5}{2}}}\] with respect to x is \[\dfrac{5}{2}\cdot {{\left( 3{{x}^{2}}-7x+3 \right)}^{\dfrac{3}{2}}}\cdot \left( 6x-7 \right)\].
Note: The process of finding a derivative is called differentiation. The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change of x. Derivatives are a fundamental tool of calculus.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

