
Find the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$
Answer
587.7k+ views
Hint: We solve this question by dividing the given function into two parts $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$. Then we use the formula for product rule to find the derivative of given function, $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. Then we find the derivatives of both functions using the formula for differentiation $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$ and the formula for chain rule, $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$. Then after finding those derivatives we substitute them in the formula for product rule to find the required derivative.
Complete step by step answer:
Let us assume that $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
So, we can write our given function as $f\left( x \right)g\left( x \right)$.
So, we need to find the derivative of $f\left( x \right)g\left( x \right)$.
Now let us consider the product rule in differentiation.
$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$
So, let us find the values of ${f}'\left( x \right)$ and ${g}'\left( x \right)$.
First let us consider the function $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$.
$\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}{{\left( 3x+5 \right)}^{4}}$
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${f}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{4-1}}\times \left( \dfrac{d}{dx}\left( 3x+5 \right) \right) \\
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{3}}\times \left( 3 \right) \\
& \Rightarrow {f}'\left( x \right)=12{{\left( 3x+5 \right)}^{3}} \\
\end{align}$
Now let us consider the function $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${g}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( {{x}^{2}}-1 \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}\dfrac{1}{\sqrt{{{x}^{2}}-1}}\times \left( 2x \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Substituting these values of functions in the product rule we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=12{{\left( 3x+5 \right)}^{3}}\sqrt{{{x}^{2}}-1}+{{\left( 3x+5 \right)}^{4}}\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Solving it by taking ${{\left( 3x+5 \right)}^{3}}$ common we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( 12\sqrt{{{x}^{2}}-1}+\left( 3x+5 \right)\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{12{{x}^{2}}-12+3{{x}^{2}}+5x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right) \\
\end{align}$
Hence, we get the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$ is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Hence, answer is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Note:
The common mistake made while solving this problem is one might take the formula for product rule as $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right){g}'\left( x \right)+f\left( x \right)g\left( x \right)$, which is wrong because the actual formula for product rule is $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. One might also confuse the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$ with the formula for product rule. So, one must carefully observe the formulae they are using.
Complete step by step answer:
Let us assume that $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
So, we can write our given function as $f\left( x \right)g\left( x \right)$.
So, we need to find the derivative of $f\left( x \right)g\left( x \right)$.
Now let us consider the product rule in differentiation.
$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$
So, let us find the values of ${f}'\left( x \right)$ and ${g}'\left( x \right)$.
First let us consider the function $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$.
$\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}{{\left( 3x+5 \right)}^{4}}$
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${f}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{4-1}}\times \left( \dfrac{d}{dx}\left( 3x+5 \right) \right) \\
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{3}}\times \left( 3 \right) \\
& \Rightarrow {f}'\left( x \right)=12{{\left( 3x+5 \right)}^{3}} \\
\end{align}$
Now let us consider the function $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${g}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( {{x}^{2}}-1 \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}\dfrac{1}{\sqrt{{{x}^{2}}-1}}\times \left( 2x \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Substituting these values of functions in the product rule we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=12{{\left( 3x+5 \right)}^{3}}\sqrt{{{x}^{2}}-1}+{{\left( 3x+5 \right)}^{4}}\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Solving it by taking ${{\left( 3x+5 \right)}^{3}}$ common we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( 12\sqrt{{{x}^{2}}-1}+\left( 3x+5 \right)\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{12{{x}^{2}}-12+3{{x}^{2}}+5x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right) \\
\end{align}$
Hence, we get the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$ is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Hence, answer is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Note:
The common mistake made while solving this problem is one might take the formula for product rule as $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right){g}'\left( x \right)+f\left( x \right)g\left( x \right)$, which is wrong because the actual formula for product rule is $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. One might also confuse the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$ with the formula for product rule. So, one must carefully observe the formulae they are using.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

