
Find the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$
Answer
507.9k+ views
Hint: We solve this question by dividing the given function into two parts $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$. Then we use the formula for product rule to find the derivative of given function, $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. Then we find the derivatives of both functions using the formula for differentiation $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$ and the formula for chain rule, $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$. Then after finding those derivatives we substitute them in the formula for product rule to find the required derivative.
Complete step by step answer:
Let us assume that $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
So, we can write our given function as $f\left( x \right)g\left( x \right)$.
So, we need to find the derivative of $f\left( x \right)g\left( x \right)$.
Now let us consider the product rule in differentiation.
$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$
So, let us find the values of ${f}'\left( x \right)$ and ${g}'\left( x \right)$.
First let us consider the function $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$.
$\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}{{\left( 3x+5 \right)}^{4}}$
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${f}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{4-1}}\times \left( \dfrac{d}{dx}\left( 3x+5 \right) \right) \\
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{3}}\times \left( 3 \right) \\
& \Rightarrow {f}'\left( x \right)=12{{\left( 3x+5 \right)}^{3}} \\
\end{align}$
Now let us consider the function $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${g}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( {{x}^{2}}-1 \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}\dfrac{1}{\sqrt{{{x}^{2}}-1}}\times \left( 2x \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Substituting these values of functions in the product rule we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=12{{\left( 3x+5 \right)}^{3}}\sqrt{{{x}^{2}}-1}+{{\left( 3x+5 \right)}^{4}}\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Solving it by taking ${{\left( 3x+5 \right)}^{3}}$ common we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( 12\sqrt{{{x}^{2}}-1}+\left( 3x+5 \right)\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{12{{x}^{2}}-12+3{{x}^{2}}+5x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right) \\
\end{align}$
Hence, we get the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$ is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Hence, answer is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Note:
The common mistake made while solving this problem is one might take the formula for product rule as $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right){g}'\left( x \right)+f\left( x \right)g\left( x \right)$, which is wrong because the actual formula for product rule is $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. One might also confuse the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$ with the formula for product rule. So, one must carefully observe the formulae they are using.
Complete step by step answer:
Let us assume that $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
So, we can write our given function as $f\left( x \right)g\left( x \right)$.
So, we need to find the derivative of $f\left( x \right)g\left( x \right)$.
Now let us consider the product rule in differentiation.
$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$
So, let us find the values of ${f}'\left( x \right)$ and ${g}'\left( x \right)$.
First let us consider the function $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$.
$\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}{{\left( 3x+5 \right)}^{4}}$
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${f}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{4-1}}\times \left( \dfrac{d}{dx}\left( 3x+5 \right) \right) \\
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{3}}\times \left( 3 \right) \\
& \Rightarrow {f}'\left( x \right)=12{{\left( 3x+5 \right)}^{3}} \\
\end{align}$
Now let us consider the function $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${g}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( {{x}^{2}}-1 \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}\dfrac{1}{\sqrt{{{x}^{2}}-1}}\times \left( 2x \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Substituting these values of functions in the product rule we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=12{{\left( 3x+5 \right)}^{3}}\sqrt{{{x}^{2}}-1}+{{\left( 3x+5 \right)}^{4}}\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Solving it by taking ${{\left( 3x+5 \right)}^{3}}$ common we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( 12\sqrt{{{x}^{2}}-1}+\left( 3x+5 \right)\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{12{{x}^{2}}-12+3{{x}^{2}}+5x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right) \\
\end{align}$
Hence, we get the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$ is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Hence, answer is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Note:
The common mistake made while solving this problem is one might take the formula for product rule as $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right){g}'\left( x \right)+f\left( x \right)g\left( x \right)$, which is wrong because the actual formula for product rule is $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. One might also confuse the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$ with the formula for product rule. So, one must carefully observe the formulae they are using.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
