
Find the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$
Answer
576.6k+ views
Hint: We solve this question by dividing the given function into two parts $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$. Then we use the formula for product rule to find the derivative of given function, $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. Then we find the derivatives of both functions using the formula for differentiation $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$ and the formula for chain rule, $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$. Then after finding those derivatives we substitute them in the formula for product rule to find the required derivative.
Complete step by step answer:
Let us assume that $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
So, we can write our given function as $f\left( x \right)g\left( x \right)$.
So, we need to find the derivative of $f\left( x \right)g\left( x \right)$.
Now let us consider the product rule in differentiation.
$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$
So, let us find the values of ${f}'\left( x \right)$ and ${g}'\left( x \right)$.
First let us consider the function $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$.
$\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}{{\left( 3x+5 \right)}^{4}}$
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${f}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{4-1}}\times \left( \dfrac{d}{dx}\left( 3x+5 \right) \right) \\
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{3}}\times \left( 3 \right) \\
& \Rightarrow {f}'\left( x \right)=12{{\left( 3x+5 \right)}^{3}} \\
\end{align}$
Now let us consider the function $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${g}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( {{x}^{2}}-1 \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}\dfrac{1}{\sqrt{{{x}^{2}}-1}}\times \left( 2x \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Substituting these values of functions in the product rule we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=12{{\left( 3x+5 \right)}^{3}}\sqrt{{{x}^{2}}-1}+{{\left( 3x+5 \right)}^{4}}\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Solving it by taking ${{\left( 3x+5 \right)}^{3}}$ common we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( 12\sqrt{{{x}^{2}}-1}+\left( 3x+5 \right)\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{12{{x}^{2}}-12+3{{x}^{2}}+5x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right) \\
\end{align}$
Hence, we get the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$ is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Hence, answer is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Note:
The common mistake made while solving this problem is one might take the formula for product rule as $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right){g}'\left( x \right)+f\left( x \right)g\left( x \right)$, which is wrong because the actual formula for product rule is $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. One might also confuse the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$ with the formula for product rule. So, one must carefully observe the formulae they are using.
Complete step by step answer:
Let us assume that $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$ and $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
So, we can write our given function as $f\left( x \right)g\left( x \right)$.
So, we need to find the derivative of $f\left( x \right)g\left( x \right)$.
Now let us consider the product rule in differentiation.
$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$
So, let us find the values of ${f}'\left( x \right)$ and ${g}'\left( x \right)$.
First let us consider the function $f\left( x \right)={{\left( 3x+5 \right)}^{4}}$.
$\Rightarrow {f}'\left( x \right)=\dfrac{d}{dx}{{\left( 3x+5 \right)}^{4}}$
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${f}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{4-1}}\times \left( \dfrac{d}{dx}\left( 3x+5 \right) \right) \\
& \Rightarrow {f}'\left( x \right)=4\times {{\left( 3x+5 \right)}^{3}}\times \left( 3 \right) \\
& \Rightarrow {f}'\left( x \right)=12{{\left( 3x+5 \right)}^{3}} \\
\end{align}$
Now let us consider the function $g\left( x \right)=\sqrt{{{x}^{2}}-1}$.
Now let us consider the formula for differentiation of ${{x}^{n}}$,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n\times {{x}^{n-1}}$
Let us also consider the formula for chain rule,
$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$
Using these formulas, we can write ${g}'\left( x \right)$ as
$\begin{align}
& \Rightarrow {g}'\left( x \right)=\dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( {{x}^{2}}-1 \right)}^{\dfrac{1}{2}-1}}\times \dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}\dfrac{1}{\sqrt{{{x}^{2}}-1}}\times \left( 2x \right) \\
& \Rightarrow {g}'\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Substituting these values of functions in the product rule we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=12{{\left( 3x+5 \right)}^{3}}\sqrt{{{x}^{2}}-1}+{{\left( 3x+5 \right)}^{4}}\dfrac{x}{\sqrt{{{x}^{2}}-1}} \\
\end{align}$
Solving it by taking ${{\left( 3x+5 \right)}^{3}}$ common we get,
$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( 12\sqrt{{{x}^{2}}-1}+\left( 3x+5 \right)\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{12{{x}^{2}}-12+3{{x}^{2}}+5x}{\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right) \\
\end{align}$
Hence, we get the derivative of ${{\left( 3x+5 \right)}^{4}}\times \sqrt{{{x}^{2}}-1}$ is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Hence, answer is ${{\left( 3x+5 \right)}^{3}}\left( \dfrac{15{{x}^{2}}+5x-12}{\sqrt{{{x}^{2}}-1}} \right)$.
Note:
The common mistake made while solving this problem is one might take the formula for product rule as $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right){g}'\left( x \right)+f\left( x \right)g\left( x \right)$, which is wrong because the actual formula for product rule is $\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)={f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right)$. One might also confuse the formula $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$ with the formula for product rule. So, one must carefully observe the formulae they are using.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

