
Find the derivative of $f\left( x \right) = 1 + x + {x^2} + ... + {x^{50}}$ at $x = 1$.
Answer
585.3k+ views
Hint: Write the given function in summation form. Apply the differentiation formulas \[{\left( {f\left( x \right) + g\left( x \right) + h\left( x \right)} \right)^\prime } = f'\left( x \right) + g'\left( x \right) + h'\left( x \right)\] and $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ to find the differentiation of $f\left( x \right)$. Then put $x = 1$ and apply the formula of sum of first $n$ natural numbers, i.e. $\dfrac{{n\left( {n + 1} \right)}}{2}$ to get the final answer.
Complete step-by-step answer:
According to the question, we have been given a function $f\left( x \right) = 1 + x + {x^2} + ... + {x^{50}}$.
This function can be written as:
$ \Rightarrow f\left( x \right) = \sum\limits_{i = 0}^{50} {{x^i}} $
We have to find the derivative of $f\left( x \right)$ at $x = 1$.
So, differentiating the function, we’ll get:
$ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {\sum\limits_{i = 0}^{50} {{x^i}} } \right)$
Now, we know that the differentiation of sum of two or more functions is the sum of the differentiations of the respective functions, i.e.
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right) + h\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) + \dfrac{d}{{dx}}g\left( x \right) + \dfrac{d}{{dx}}h\left( x \right)\]
Applying this rule for the above differentiation, we’ll get:
$ \Rightarrow f'\left( x \right) = \sum\limits_{i = 0}^{50} {\dfrac{d}{{dx}}{x^i}} $
Further, we know that the differentiation of ${x^n}$ is given as:
$ \Rightarrow \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
Applying this formula for the above differentiation, we’ll get:
$ \Rightarrow f'\left( x \right) = \sum\limits_{i = 0}^{50} {i{x^{i - 1}}} $
Putting $x = 1$ in above expression, we’ll get:
$
\Rightarrow f'\left( 1 \right) = \sum\limits_{i = 0}^{50} {i{{\left( 1 \right)}^{i - 1}}} \\
\Rightarrow f'\left( 1 \right) = \sum\limits_{i = 0}^{50} i \\
$
Expanding the summation by putting the values of $i$, we have:
$ \Rightarrow f'\left( 1 \right) = 0 + 1 + 2 + 3 + ...... + 50$
Thus, the differentiation of $f\left( x \right)$ at $x = 1$ is the sum of first 50 natural numbers.
We know that the sum of first $n$ natural numbers is given by the formula $\dfrac{{n\left( {n + 1} \right)}}{2}$. Putting $n = 50$ for finding the value of $f'\left( 1 \right)$, we’ll get:
$
\Rightarrow f'\left( 1 \right) = \dfrac{{50 \times 51}}{2} \\
\Rightarrow f'\left( 1 \right) = 25 \times 51 \\
\Rightarrow f'\left( 1 \right) = 1275 \\
$
Thus the derivative of the given function at $x = 1$ is 1275.
Additional Information:
The sum of first $n$ natural numbers is given by the formula:
$ \Rightarrow \sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}} $
Similarly, the sum of the squares first $n$ natural numbers is given by the formula:
$ \Rightarrow \sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
And the sum of the cubes first $n$ natural numbers is given by the formula:
$ \Rightarrow \sum\limits_{k = 1}^n {{k^3} = {{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}} $
Note: The formula for the differentiation of ${x^n}$, as used above, is given as:
$ \Rightarrow \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, where $n \ne - 1$.
Thus the above formula is not applicable for $n \ne - 1$. So, if we have to find the differentiation of ${x^{ - 1}}$(i.e. when $n = - 1$), its formula is given as:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = {\log _e}x = \ln x$
Complete step-by-step answer:
According to the question, we have been given a function $f\left( x \right) = 1 + x + {x^2} + ... + {x^{50}}$.
This function can be written as:
$ \Rightarrow f\left( x \right) = \sum\limits_{i = 0}^{50} {{x^i}} $
We have to find the derivative of $f\left( x \right)$ at $x = 1$.
So, differentiating the function, we’ll get:
$ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {\sum\limits_{i = 0}^{50} {{x^i}} } \right)$
Now, we know that the differentiation of sum of two or more functions is the sum of the differentiations of the respective functions, i.e.
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right) + h\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) + \dfrac{d}{{dx}}g\left( x \right) + \dfrac{d}{{dx}}h\left( x \right)\]
Applying this rule for the above differentiation, we’ll get:
$ \Rightarrow f'\left( x \right) = \sum\limits_{i = 0}^{50} {\dfrac{d}{{dx}}{x^i}} $
Further, we know that the differentiation of ${x^n}$ is given as:
$ \Rightarrow \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
Applying this formula for the above differentiation, we’ll get:
$ \Rightarrow f'\left( x \right) = \sum\limits_{i = 0}^{50} {i{x^{i - 1}}} $
Putting $x = 1$ in above expression, we’ll get:
$
\Rightarrow f'\left( 1 \right) = \sum\limits_{i = 0}^{50} {i{{\left( 1 \right)}^{i - 1}}} \\
\Rightarrow f'\left( 1 \right) = \sum\limits_{i = 0}^{50} i \\
$
Expanding the summation by putting the values of $i$, we have:
$ \Rightarrow f'\left( 1 \right) = 0 + 1 + 2 + 3 + ...... + 50$
Thus, the differentiation of $f\left( x \right)$ at $x = 1$ is the sum of first 50 natural numbers.
We know that the sum of first $n$ natural numbers is given by the formula $\dfrac{{n\left( {n + 1} \right)}}{2}$. Putting $n = 50$ for finding the value of $f'\left( 1 \right)$, we’ll get:
$
\Rightarrow f'\left( 1 \right) = \dfrac{{50 \times 51}}{2} \\
\Rightarrow f'\left( 1 \right) = 25 \times 51 \\
\Rightarrow f'\left( 1 \right) = 1275 \\
$
Thus the derivative of the given function at $x = 1$ is 1275.
Additional Information:
The sum of first $n$ natural numbers is given by the formula:
$ \Rightarrow \sum\limits_{k = 1}^n {k = \dfrac{{n\left( {n + 1} \right)}}{2}} $
Similarly, the sum of the squares first $n$ natural numbers is given by the formula:
$ \Rightarrow \sum\limits_{k = 1}^n {{k^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
And the sum of the cubes first $n$ natural numbers is given by the formula:
$ \Rightarrow \sum\limits_{k = 1}^n {{k^3} = {{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}} $
Note: The formula for the differentiation of ${x^n}$, as used above, is given as:
$ \Rightarrow \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, where $n \ne - 1$.
Thus the above formula is not applicable for $n \ne - 1$. So, if we have to find the differentiation of ${x^{ - 1}}$(i.e. when $n = - 1$), its formula is given as:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = {\log _e}x = \ln x$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

