
Find the derivative $\dfrac{{dy}}{{dx}}$ for a given function $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$
Answer
587.7k+ views
Hint: Derivative of the inverse function can be easily obtained by using the standard formulas. Before using the standard formula, try to convert the function in the easiest form. Function $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$ can be simplified by assuming $x = \tan \theta $. And put $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and use standard formula $\operatorname{Cos} (2\theta ) = {\cos ^2}\theta - {\sin ^2}\theta $ and ${\sin ^2}\theta + {\cos ^2}\theta = 1$. After that use $\cos \theta = \sin ((4n + 1)\dfrac{\pi }{2} - \theta )$ to convert in $\sin \theta $ form. After that use the standard derivation formula of ${\tan ^{ - 1}}x$ to get $\dfrac{{dy}}{{dx}}$.
Standard formula for derivation of ${\tan ^{ - 1}}x$ is $\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}}$.
Complete step-by-step answer:
Here given function, $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$
Before finding derivatives of function, let’s simplify it.
Let’s assume $x = \tan \theta $
So, $y = {\sin ^{ - 1}}(\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }})$
Putting $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
So, $y = {\sin ^{ - 1}}(\dfrac{{1 - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{1 + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}})$
Simplifying the equitation,
\[y = {\sin ^{ - 1}}(\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\cos }^2}\theta + {{\sin }^2}\theta }})\]
Using formula $\operatorname{Cos} (2\theta ) = {\cos ^2}\theta - {\sin ^2}\theta $ and ${\sin ^2}\theta + {\cos ^2}\theta = 1$
So, \[y = {\sin ^{ - 1}}(\dfrac{{\cos (2\theta )}}{1})\]
\[y = {\sin ^{ - 1}}(\cos (2\theta ))\]
Now converting $\cos \theta $ function in $\sin \theta $ function by using formula, $\cos \theta = \sin ((4n + 1)\dfrac{\pi }{2} - \theta )$, where n is any natural number ($n \in N$).
So, converting the above equitation,
\[y = {\sin ^{ - 1}}(\sin ((4n + 1)\dfrac{\pi }{2} - 2\theta ))\]
As we know that, \[{\sin ^{ - 1}}(\sin \theta ) = \theta \], so simplifying above equation,
\[y = (4n + 1)\dfrac{\pi }{2} - 2\theta )\]
Now as we assumed $x = \tan \theta $, so $\theta = {\tan ^{ - 1}}x$
Now putting $\theta = {\tan ^{ - 1}}x$ in above equation,
\[y = (4n + 1)\dfrac{\pi }{2} - 2{\tan ^{ - 1}}x\]
Above equation is the simplified form of the given function $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$.
Now derivations of the function $y$ can be obtained by derivation with respect to $x$.
So, derivation of function $y$ with respect to $x$, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2} - 2{\tan ^{ - 1}}x)$
Using basic rule of derivatives of sum function, $\dfrac{d}{{dx}}(f(x) + g(x)) = \dfrac{d}{{dx}}(f(x)) + \dfrac{d}{{dx}}(g(x))$,
Simplifying our equation $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2}) + \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)$
As $\dfrac{d}{{dx}}(c) = 0$ means derivation of any constant term is zero, so, $\,\dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2}) = 0$.
So, $\dfrac{{dy}}{{dx}} = 0 + \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)$
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)$
Using $\dfrac{d}{{dx}}(af(x)) = a\dfrac{d}{{dx}}(f(x)$ in our equation, we will get $\dfrac{{dy}}{{dx}} = ( - 2)\dfrac{d}{{dx}}({\tan ^{ - 1}}x)$
Using standard formula for derivation of ${\tan ^{ - 1}}x$, $\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}}$
Putting this in our above equation,
$\dfrac{{dy}}{{dx}} = ( - 2) \times (\dfrac{1}{{1 + {x^2}}})$
So, $\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}$
So, derivation of given function $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$ is $\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}$
Note: If same type of function $y = {\sin ^{ - 1}}(\dfrac{{2x}}{{1 + {x^2}}})$ is given then also assume $x = \tan \theta $ and use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ to simplify.
After that use ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and $\sin (2\theta ) = 2\sin \theta \cos \theta $ to convert $\dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $, So \[y = {\sin ^{ - 1}}(\sin (2\theta )) = 2\theta \].
Then put $\theta = {\tan ^{ - 1}}x$, so \[y = 2{\tan ^{ - 1}}x\].
After that do derivation of the function $y$.
So $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{\tan ^{ - 1}}x) = 2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = 2(\dfrac{1}{{1 + {x^2}}}) = \dfrac{2}{{1 + {x^2}}}$.
Standard formula for derivation of ${\tan ^{ - 1}}x$ is $\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}}$.
Complete step-by-step answer:
Here given function, $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$
Before finding derivatives of function, let’s simplify it.
Let’s assume $x = \tan \theta $
So, $y = {\sin ^{ - 1}}(\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }})$
Putting $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
So, $y = {\sin ^{ - 1}}(\dfrac{{1 - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{1 + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}})$
Simplifying the equitation,
\[y = {\sin ^{ - 1}}(\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\cos }^2}\theta + {{\sin }^2}\theta }})\]
Using formula $\operatorname{Cos} (2\theta ) = {\cos ^2}\theta - {\sin ^2}\theta $ and ${\sin ^2}\theta + {\cos ^2}\theta = 1$
So, \[y = {\sin ^{ - 1}}(\dfrac{{\cos (2\theta )}}{1})\]
\[y = {\sin ^{ - 1}}(\cos (2\theta ))\]
Now converting $\cos \theta $ function in $\sin \theta $ function by using formula, $\cos \theta = \sin ((4n + 1)\dfrac{\pi }{2} - \theta )$, where n is any natural number ($n \in N$).
So, converting the above equitation,
\[y = {\sin ^{ - 1}}(\sin ((4n + 1)\dfrac{\pi }{2} - 2\theta ))\]
As we know that, \[{\sin ^{ - 1}}(\sin \theta ) = \theta \], so simplifying above equation,
\[y = (4n + 1)\dfrac{\pi }{2} - 2\theta )\]
Now as we assumed $x = \tan \theta $, so $\theta = {\tan ^{ - 1}}x$
Now putting $\theta = {\tan ^{ - 1}}x$ in above equation,
\[y = (4n + 1)\dfrac{\pi }{2} - 2{\tan ^{ - 1}}x\]
Above equation is the simplified form of the given function $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$.
Now derivations of the function $y$ can be obtained by derivation with respect to $x$.
So, derivation of function $y$ with respect to $x$, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2} - 2{\tan ^{ - 1}}x)$
Using basic rule of derivatives of sum function, $\dfrac{d}{{dx}}(f(x) + g(x)) = \dfrac{d}{{dx}}(f(x)) + \dfrac{d}{{dx}}(g(x))$,
Simplifying our equation $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2}) + \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)$
As $\dfrac{d}{{dx}}(c) = 0$ means derivation of any constant term is zero, so, $\,\dfrac{d}{{dx}}((4n + 1)\dfrac{\pi }{2}) = 0$.
So, $\dfrac{{dy}}{{dx}} = 0 + \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)$
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}( - 2{\tan ^{ - 1}}x)$
Using $\dfrac{d}{{dx}}(af(x)) = a\dfrac{d}{{dx}}(f(x)$ in our equation, we will get $\dfrac{{dy}}{{dx}} = ( - 2)\dfrac{d}{{dx}}({\tan ^{ - 1}}x)$
Using standard formula for derivation of ${\tan ^{ - 1}}x$, $\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}}$
Putting this in our above equation,
$\dfrac{{dy}}{{dx}} = ( - 2) \times (\dfrac{1}{{1 + {x^2}}})$
So, $\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}$
So, derivation of given function $y = {\sin ^{ - 1}}(\dfrac{{1 - {x^2}}}{{1 + {x^2}}})$ is $\dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}$
Note: If same type of function $y = {\sin ^{ - 1}}(\dfrac{{2x}}{{1 + {x^2}}})$ is given then also assume $x = \tan \theta $ and use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ to simplify.
After that use ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and $\sin (2\theta ) = 2\sin \theta \cos \theta $ to convert $\dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $, So \[y = {\sin ^{ - 1}}(\sin (2\theta )) = 2\theta \].
Then put $\theta = {\tan ^{ - 1}}x$, so \[y = 2{\tan ^{ - 1}}x\].
After that do derivation of the function $y$.
So $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(2{\tan ^{ - 1}}x) = 2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = 2(\dfrac{1}{{1 + {x^2}}}) = \dfrac{2}{{1 + {x^2}}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

