
How do you find the critical points to graph $y=\sin \left( \dfrac{x}{2} \right)$?
Answer
524.7k+ views
Hint: In this problem we need to calculate the critical point on the given curve. We know that the critical points are the points on the curve at which the curve has maximum, minimum and zero values. So, we will assume the range of variable $x$ based on the given function and calculate all the known values in the given interval. Now we will plot the graph of the given equation and observe the critical points.
Complete step by step solution:
Given that, $y=\sin \left( \dfrac{x}{2} \right)$.
In the given equation we can observe the trigonometric function $\sin $. We know that the function $\sin x$ shows unique value in the range of $\left[ 0,2\pi \right]$. But in the above equation we have $\sin \left( \dfrac{x}{2} \right)$ i.e., it shows the unique ranges in $\left[ 0\times 2,2\pi \times 2 \right]=\left[ 0,4\pi \right]$. So, considering the range of variables $x$ as $\left[ 0,4\pi \right]$. Now the value of $y$ for different values of $x$ will be
If $x=0\Rightarrow \sin \left( \dfrac{x}{2} \right)=\sin 0=0$
If $x=\dfrac{\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{\pi }{2}}{2} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
If $x=\pi \Rightarrow \sin \left( \dfrac{\pi }{2} \right)=1$
If $x=\dfrac{3\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{3\pi }{2}}{2} \right)=\sin \left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
If $x=2\pi \Rightarrow \sin \left( \dfrac{2\pi }{2} \right)=\sin \pi =0$
If $x=\dfrac{5\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{5\pi }{2}}{2} \right)=\sin \left( \dfrac{5\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
If $x=3\pi \Rightarrow \sin \left( \dfrac{3\pi }{2} \right)=-1$
If $x=\dfrac{7\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{7\pi }{2}}{2} \right)=\sin \left( \dfrac{7\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}$
If $x=4\pi \Rightarrow \sin \left( \dfrac{4\pi }{2} \right)=\sin 2\pi =0$
Plotting the graph of the function $y=\sin \left( \dfrac{x}{2} \right)$ from the above points, then we will get
From the above graph we can say that the critical points are $0$, $\pi $, $2\pi $, $3\pi $, $4\pi $.
The zeros of the graph at $0$, $2\pi $, $4\pi $.
The maximum of the graph at $\pi $.
The minimum of the graph at $3\pi $.
Note: We can also calculate the critical point of the function $y=\sin \left( \dfrac{x}{2} \right)$ from the critical points of $y=\sin x$. The graph of the function $y=\sin x$ will be
From the above graph the critical point of $y=\sin x$ are $0$, $\dfrac{\pi }{2}$, $\pi $, $\dfrac{3\pi }{2}$, $2\pi $. If we multiply the above values with two then we will get the critical point of $y=\sin \left( \dfrac{x}{2} \right)$.
Complete step by step solution:
Given that, $y=\sin \left( \dfrac{x}{2} \right)$.
In the given equation we can observe the trigonometric function $\sin $. We know that the function $\sin x$ shows unique value in the range of $\left[ 0,2\pi \right]$. But in the above equation we have $\sin \left( \dfrac{x}{2} \right)$ i.e., it shows the unique ranges in $\left[ 0\times 2,2\pi \times 2 \right]=\left[ 0,4\pi \right]$. So, considering the range of variables $x$ as $\left[ 0,4\pi \right]$. Now the value of $y$ for different values of $x$ will be
If $x=0\Rightarrow \sin \left( \dfrac{x}{2} \right)=\sin 0=0$
If $x=\dfrac{\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{\pi }{2}}{2} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
If $x=\pi \Rightarrow \sin \left( \dfrac{\pi }{2} \right)=1$
If $x=\dfrac{3\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{3\pi }{2}}{2} \right)=\sin \left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
If $x=2\pi \Rightarrow \sin \left( \dfrac{2\pi }{2} \right)=\sin \pi =0$
If $x=\dfrac{5\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{5\pi }{2}}{2} \right)=\sin \left( \dfrac{5\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
If $x=3\pi \Rightarrow \sin \left( \dfrac{3\pi }{2} \right)=-1$
If $x=\dfrac{7\pi }{2}\Rightarrow \sin \left( \dfrac{\dfrac{7\pi }{2}}{2} \right)=\sin \left( \dfrac{7\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}$
If $x=4\pi \Rightarrow \sin \left( \dfrac{4\pi }{2} \right)=\sin 2\pi =0$
Plotting the graph of the function $y=\sin \left( \dfrac{x}{2} \right)$ from the above points, then we will get
From the above graph we can say that the critical points are $0$, $\pi $, $2\pi $, $3\pi $, $4\pi $.
The zeros of the graph at $0$, $2\pi $, $4\pi $.
The maximum of the graph at $\pi $.
The minimum of the graph at $3\pi $.
Note: We can also calculate the critical point of the function $y=\sin \left( \dfrac{x}{2} \right)$ from the critical points of $y=\sin x$. The graph of the function $y=\sin x$ will be
From the above graph the critical point of $y=\sin x$ are $0$, $\dfrac{\pi }{2}$, $\pi $, $\dfrac{3\pi }{2}$, $2\pi $. If we multiply the above values with two then we will get the critical point of $y=\sin \left( \dfrac{x}{2} \right)$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Who translated the Upanishads and Atharva into the class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

How is the angle of emergence e related to the angle class 12 physics CBSE

