
Find the coefficients of partial fraction for the equation \[\int {\dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}}} \].
Answer
597k+ views
Hint: First of all, split the equation into the desired form of the partial fractions. Then find the unknown by using a suitable method and hence to obtain the required answer. As they have asked to find the coefficients of partial fraction only we need not to solve the whole integral.
Complete step by step solution:
Let \[I = \int {\dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}}} dx\]
Now, consider the partial fractions of \[\dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}}\] i.e.,
\[
\Rightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}} = \dfrac{A}{{x - 4}} + \dfrac{B}{{x - 5}} + \dfrac{C}{{x - 6}} \\
\Rightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}} = \dfrac{{A\left( {x - 5} \right)\left( {x - 6} \right) + B\left( {x - 4} \right)\left( {x - 6} \right) + C\left( {x - 4} \right)\left( {x - 5} \right)}}{{\left( {x - 3} \right)\left( {x - 4} \right)\left( {x - 6} \right)}} \\
\]
Cancelling the common terms, we have
\[ \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) = A\left( {x - 5} \right)\left( {x - 6} \right) + B\left( {x - 4} \right)\left( {x - 6} \right) + C\left( {x - 4} \right)\left( {x - 5} \right)\]
Put \[x = 4\]
\[
\Rightarrow \left( {4 - 1} \right)\left( {4 - 2} \right)\left( {4 - 3} \right) = A\left( {4 - 5} \right)\left( {4 - 6} \right) + B\left( {4 - 4} \right)\left( {4 - 6} \right) + C\left( {4 - 4} \right)\left( {4 - 5} \right) \\
\Rightarrow 3 \times 2 \times 1 = A\left( { - 1} \right)\left( { - 2} \right) + 0 + 0 \\
\Rightarrow 6 = 2A \\
\therefore A = 3 \\
\]
Put \[x = 5\]
\[
\Rightarrow \left( {5 - 1} \right)\left( {5 - 2} \right)\left( {5 - 3} \right) = A\left( {5 - 5} \right)\left( {5 - 6} \right) + B\left( {5 - 4} \right)\left( {5 - 6} \right) + C\left( {5 - 4} \right)\left( {5 - 5} \right) \\
\Rightarrow 4 \times 3 \times 2 = 0 + B\left( 1 \right)\left( { - 1} \right) + 0 \\
\Rightarrow 24 = - B \\
\therefore B = - 24 \\
\]
Put \[x = 6\]
\[
\Rightarrow \left( {6 - 1} \right)\left( {6 - 2} \right)\left( {6 - 3} \right) = A\left( {6 - 5} \right)\left( {6 - 6} \right) + B\left( {6 - 4} \right)\left( {6 - 6} \right) + C\left( {6 - 4} \right)\left( {6 - 5} \right) \\
\Rightarrow 5 \times 4 \times 3 = 0 + 0 + C\left( 2 \right)\left( 1 \right) \\
\Rightarrow 60 = 2C \\
\therefore C = 30 \\
\]
Thus, the coefficients of partial fraction of \[\int {\dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}}} \] are \[3, - 24,30\].
Note: The partial fraction of the equation of the form \[\dfrac{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {x - p} \right)\left( {x - q} \right)\left( {x - r} \right)}}\] is given by \[\dfrac{A}{{x - p}} + \dfrac{B}{{x - q}} + \dfrac{C}{{x - r}}\] where \[A,B,C\] can be obtained by substituting by \[x = p,q,r\] respectively.
Complete step by step solution:
Let \[I = \int {\dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}}} dx\]
Now, consider the partial fractions of \[\dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}}\] i.e.,
\[
\Rightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}} = \dfrac{A}{{x - 4}} + \dfrac{B}{{x - 5}} + \dfrac{C}{{x - 6}} \\
\Rightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}} = \dfrac{{A\left( {x - 5} \right)\left( {x - 6} \right) + B\left( {x - 4} \right)\left( {x - 6} \right) + C\left( {x - 4} \right)\left( {x - 5} \right)}}{{\left( {x - 3} \right)\left( {x - 4} \right)\left( {x - 6} \right)}} \\
\]
Cancelling the common terms, we have
\[ \Rightarrow \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) = A\left( {x - 5} \right)\left( {x - 6} \right) + B\left( {x - 4} \right)\left( {x - 6} \right) + C\left( {x - 4} \right)\left( {x - 5} \right)\]
Put \[x = 4\]
\[
\Rightarrow \left( {4 - 1} \right)\left( {4 - 2} \right)\left( {4 - 3} \right) = A\left( {4 - 5} \right)\left( {4 - 6} \right) + B\left( {4 - 4} \right)\left( {4 - 6} \right) + C\left( {4 - 4} \right)\left( {4 - 5} \right) \\
\Rightarrow 3 \times 2 \times 1 = A\left( { - 1} \right)\left( { - 2} \right) + 0 + 0 \\
\Rightarrow 6 = 2A \\
\therefore A = 3 \\
\]
Put \[x = 5\]
\[
\Rightarrow \left( {5 - 1} \right)\left( {5 - 2} \right)\left( {5 - 3} \right) = A\left( {5 - 5} \right)\left( {5 - 6} \right) + B\left( {5 - 4} \right)\left( {5 - 6} \right) + C\left( {5 - 4} \right)\left( {5 - 5} \right) \\
\Rightarrow 4 \times 3 \times 2 = 0 + B\left( 1 \right)\left( { - 1} \right) + 0 \\
\Rightarrow 24 = - B \\
\therefore B = - 24 \\
\]
Put \[x = 6\]
\[
\Rightarrow \left( {6 - 1} \right)\left( {6 - 2} \right)\left( {6 - 3} \right) = A\left( {6 - 5} \right)\left( {6 - 6} \right) + B\left( {6 - 4} \right)\left( {6 - 6} \right) + C\left( {6 - 4} \right)\left( {6 - 5} \right) \\
\Rightarrow 5 \times 4 \times 3 = 0 + 0 + C\left( 2 \right)\left( 1 \right) \\
\Rightarrow 60 = 2C \\
\therefore C = 30 \\
\]
Thus, the coefficients of partial fraction of \[\int {\dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 5} \right)\left( {x - 6} \right)}}} \] are \[3, - 24,30\].
Note: The partial fraction of the equation of the form \[\dfrac{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {x - p} \right)\left( {x - q} \right)\left( {x - r} \right)}}\] is given by \[\dfrac{A}{{x - p}} + \dfrac{B}{{x - q}} + \dfrac{C}{{x - r}}\] where \[A,B,C\] can be obtained by substituting by \[x = p,q,r\] respectively.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

