
Find the coefficient of \[{{x}^{n}}\]in \[{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}\]. Choose the correct option.
A. \[\dfrac{{{\left( -n \right)}^{n}}}{n!}\]
B. \[\dfrac{{{\left( -2 \right)}^{n}}}{n!}\]
C. \[\dfrac{1}{{{\left( n! \right)}^{2}}}\]
D. \[-\dfrac{1}{{{\left( n! \right)}^{2}}}\]
Answer
596.7k+ views
Hint: First multiply \[\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\times \left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\]. Now, here \[{{x}^{n}}\] is found by multiplying \[1\times {{x}^{n}}={{x}^{n}}\]or \[x\times {{x}^{n-1}}={{x}^{n}}\]or \[{{x}^{2}}\times {{x}^{n-2}}={{x}^{n}}\]and so on. So add all the coefficients of \[{{x}^{n}}\]and then use the formula that \[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\], when \[a=b=-1\], we have: \[{{\left( -2 \right)}^{n}}=\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}\]
Complete step-by-step answer:
In the question, we have to find the coefficient of \[{{x}^{n}}\]in \[{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}\].
Now we can write\[{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}=\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\times \left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\]
Next, we can see that when we multiply \[1\times \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!}\]has the \[{{x}^{n}}\], similarly when we multiply \[-x\times \dfrac{{{\left( -1 \right)}^{n-1}}{{x}^{n-1}}}{(n-1)!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{(n-1)!}\] will gain have the \[{{x}^{n}}\]. Also, when we multiply \[\dfrac{{{x}^{2}}}{2!}\times \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n-2}}}{(n-2)!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{2!(n-2)!}\]will again have \[{{x}^{n}}\].
So, we will have the pattern \[\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{0!n!}\]add together will have the \[{{x}^{n}}\]. So, to find the coefficients \[{{x}^{n}}\]of we have to add all the terms \[\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}\]
Now, we know that that expansion formula for the expression of the form \[{{\left( a+b \right)}^{n}}\]will be given by \[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\], So here when \[a=b=-1\], we have: \[{{\left( -2 \right)}^{n}}=\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}\]. Now, we have to find the value of the expression \[\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}\], so this can be done as follows:
\[\begin{align}
& \Rightarrow \dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!} \\
& \Rightarrow \dfrac{1}{n!}\left( \dfrac{{{\left( -1 \right)}^{n}}n!}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}n!}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{0!n!} \right) \\
& \Rightarrow \dfrac{1}{n!}\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!} \\
\end{align}\]
So here we see that we have \[\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}={{\left( -2 \right)}^{n}}\],so above expression is:
\[\begin{align}
& \Rightarrow \dfrac{1}{n!}\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}} \\
& \Rightarrow \dfrac{1}{n!}{{\left( -2 \right)}^{n}} \\
\end{align}\]
So finally, we can say that the value of the expression \[\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}=\dfrac{{{\left( -2 \right)}^{n}}}{n!}\]
Hence, this is the value of the coefficient of \[{{x}^{n}}\]. So, the correct answer is option B.
Note: It can be noted that \[0!=1!=1\], so we have to be careful in that. Also we should be careful that we have \[{{\left( \sum\limits_{n=0}^{\infty }{\;}\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}\ne \left( \sum\limits_{n=0}^{\infty }{\;}{{\left( \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}} \right)\]. Make a note of the expansion formula \[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\] is applicable to all types of constant or a variable, integer or a fractional number.
Complete step-by-step answer:
In the question, we have to find the coefficient of \[{{x}^{n}}\]in \[{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}\].
Now we can write\[{{\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}=\left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\times \left( 1-x+\dfrac{{{x}^{2}}}{2!}-\dfrac{{{x}^{3}}}{3!}+.....+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)\]
Next, we can see that when we multiply \[1\times \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!}\]has the \[{{x}^{n}}\], similarly when we multiply \[-x\times \dfrac{{{\left( -1 \right)}^{n-1}}{{x}^{n-1}}}{(n-1)!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{(n-1)!}\] will gain have the \[{{x}^{n}}\]. Also, when we multiply \[\dfrac{{{x}^{2}}}{2!}\times \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n-2}}}{(n-2)!}=\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{2!(n-2)!}\]will again have \[{{x}^{n}}\].
So, we will have the pattern \[\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{0!n!}\]add together will have the \[{{x}^{n}}\]. So, to find the coefficients \[{{x}^{n}}\]of we have to add all the terms \[\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}\]
Now, we know that that expansion formula for the expression of the form \[{{\left( a+b \right)}^{n}}\]will be given by \[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\], So here when \[a=b=-1\], we have: \[{{\left( -2 \right)}^{n}}=\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}\]. Now, we have to find the value of the expression \[\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}\], so this can be done as follows:
\[\begin{align}
& \Rightarrow \dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!} \\
& \Rightarrow \dfrac{1}{n!}\left( \dfrac{{{\left( -1 \right)}^{n}}n!}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}n!}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}n!}{0!n!} \right) \\
& \Rightarrow \dfrac{1}{n!}\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!} \\
\end{align}\]
So here we see that we have \[\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}}={{\left( -2 \right)}^{n}}\],so above expression is:
\[\begin{align}
& \Rightarrow \dfrac{1}{n!}\sum\limits_{r=0}^{n}{{{(-1)}^{n}}{}^{n}{{C}_{r}}} \\
& \Rightarrow \dfrac{1}{n!}{{\left( -2 \right)}^{n}} \\
\end{align}\]
So finally, we can say that the value of the expression \[\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}+\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{2!(n-2)!}+......\dfrac{{{\left( -1 \right)}^{n}}}{1!(n-1)!}+\dfrac{{{\left( -1 \right)}^{n}}}{0!n!}=\dfrac{{{\left( -2 \right)}^{n}}}{n!}\]
Hence, this is the value of the coefficient of \[{{x}^{n}}\]. So, the correct answer is option B.
Note: It can be noted that \[0!=1!=1\], so we have to be careful in that. Also we should be careful that we have \[{{\left( \sum\limits_{n=0}^{\infty }{\;}\dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}}\ne \left( \sum\limits_{n=0}^{\infty }{\;}{{\left( \dfrac{{{\left( -1 \right)}^{n}}{{x}^{n}}}{n!} \right)}^{2}} \right)\]. Make a note of the expansion formula \[{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}\] is applicable to all types of constant or a variable, integer or a fractional number.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

