
Find the coefficient of $ {{x}^{2}} $ in the expansion of $ {{e}^{2x+3}} $ as a series in powers of x.
Answer
595.5k+ views
Hint: To solve the question given above, we will first write $ {{e}^{2x+3}} $ in the form of $ {{e}^{t}} $ using the identity: $ {{e}^{a+b}}={{e}^{a}}.{{e}^{b}} $ . Then we will first find out what is Taylor’s expression for any $ f\left( x \right) $ . Then we will see the formula of expansion of $ f\left( x \right) $ . To find the expansion of $ {{e}^{x}} $ , we will take $ f\left( x \right) $ as $ {{e}^{x}} $ and then we will expand the function in the form of summation of powers of x. Then, we will find the expansion of $ {{e}^{2x+3}} $ by putting 2x in place of x and multiplying by $ {{e}^{2}} $ . Then, in the expansion obtained, we will find the coefficient of $ {{x}^{2}} $ . This will be the required answer.
Complete step-by-step answer:
To start with, we will first try to write $ {{e}^{2x+3}} $ in the form of $ {{e}^{t}} $ . We know that $ {{e}^{a+b}}={{e}^{a}}.{{e}^{b}} $ . Thus we will get,
$ \begin{align}
& {{e}^{2x+3}}={{e}^{3}}\left( {{e}^{2x}} \right) \\
& \Rightarrow {{e}^{2x+3}}={{e}^{3}}\times {{e}^{2x}}.........\left( 1 \right) \\
\end{align} $
Now, we will try to expand $ {{e}^{t}} $ using Taylor’s expansions. Taylor expansion of a function $ f\left( t \right) $ is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point. The Taylor expansion of $ f\left( t \right) $ is given by:
$ f\left( t \right)=f\left( a \right)+\dfrac{f'\left( a \right)}{1!}\left( t-a \right)+\dfrac{f''\left( a \right)}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{{f}^{\left( n \right)}}\left( a \right)}{n!}{{\left( t-a \right)}^{n}} $
Now, let us assume $ f\left( t \right)={{e}^{t}} $
\[{{e}^{t}}={{e}^{a}}+\dfrac{{}_{t=a}\left| \dfrac{d}{dt}\left( {{e}^{t}} \right) \right.}{1!}\left( t-a \right)+\dfrac{{}_{t=a}\left| \dfrac{{{d}^{2}}}{d{{t}^{2}}}\left( {{e}^{t}} \right) \right.}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{}_{t=a}\left| f\left( {{e}^{t}} \right) \right.}{n!}{{\left( t-a \right)}^{n}}\]
Now, we know that no matter how many times we differentiate $ {{e}^{t}} $ , it will still remain $ {{e}^{t}} $ . Thus, we will get,
\[\begin{align}
& {{e}^{t}}={{e}^{a}}+\dfrac{{}_{t=a}\left| {{e}^{t}} \right.}{1!}\left( t-a \right)+\dfrac{{}_{t=a}\left| {{e}^{t}} \right.}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{}_{t=a}\left| {{e}^{t}} \right.}{n!}{{\left( t-a \right)}^{n}} \\
& \Rightarrow {{e}^{t}}={{e}^{a}}+\dfrac{{{e}^{a}}}{1!}\left( t-a \right)+\dfrac{{{e}^{a}}}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{{e}^{a}}}{n!}{{\left( t-a \right)}^{n}} \\
\end{align}\]
Now, we will put a = 0 in above equation. Thus, we will get,
\[\begin{align}
& \Rightarrow {{e}^{t}}={{e}^{0}}+\dfrac{{{e}^{0}}}{1!}\left( t-0 \right)+\dfrac{{{e}^{0}}}{2!}{{\left( t-0 \right)}^{2}}+......+\dfrac{{{e}^{0}}}{n!}{{\left( t-0 \right)}^{n}} \\
& \Rightarrow {{e}^{t}}=1+\dfrac{t}{1!}+\dfrac{{{t}^{2}}}{2!}+......+\dfrac{{{t}^{n}}}{n!}.......\left( 2 \right) \\
\end{align}\]
Thus, we have got the expansion of $ {{e}^{t}} $ . Now, we will find the expansion of $ {{e}^{2x+3}} $ . From (1) we know that $ {{e}^{2x+3}}={{e}^{2x}}\times {{e}^{3}} $ . So, we will put $ t=2x $ in (2). Thus, we will get,
\[\Rightarrow {{e}^{t}}=1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+......+\dfrac{{{\left( 2x \right)}^{n}}}{n!}.......\left( 3 \right)\]
Now, we will substitute the value of $ {{e}^{2x}} $ from (3) to (1). Thus, we will get,
$ {{e}^{2x+3}}={{e}^{3}}\times \left[ 1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+......+\dfrac{{{\left( 2x \right)}^{n}}}{n!} \right] $
Now, we have to find the coefficient of $ {{x}^{2}} $ in the above series. The coefficient of $ {{x}^{2}} $ in above series is given by,
$ \begin{align}
& coefficient\ of\ {{x}^{2}}={{e}^{3}}\times \dfrac{{{\left( 2 \right)}^{2}}}{2!} \\
& \Rightarrow coefficient\ of\ {{x}^{2}}={{e}^{3}}\times \dfrac{4}{2} \\
& coefficient\ of\ {{x}^{2}}=2{{e}^{3}} \\
\end{align} $
Note: The Taylor’s expansion which we have applied to a function $ f\left( t \right) $ has certain limitations. To apply this Taylor expansion to any function $ f\left( t \right) $ , $ f\left( t \right) $ should be continuous and it should be infinitely differentiable at “a”. The function $ f\left( t \right)={{e}^{t}} $ is continuous and infinitely differentiable at all points so we have been able to find its expansion.
Complete step-by-step answer:
To start with, we will first try to write $ {{e}^{2x+3}} $ in the form of $ {{e}^{t}} $ . We know that $ {{e}^{a+b}}={{e}^{a}}.{{e}^{b}} $ . Thus we will get,
$ \begin{align}
& {{e}^{2x+3}}={{e}^{3}}\left( {{e}^{2x}} \right) \\
& \Rightarrow {{e}^{2x+3}}={{e}^{3}}\times {{e}^{2x}}.........\left( 1 \right) \\
\end{align} $
Now, we will try to expand $ {{e}^{t}} $ using Taylor’s expansions. Taylor expansion of a function $ f\left( t \right) $ is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point. The Taylor expansion of $ f\left( t \right) $ is given by:
$ f\left( t \right)=f\left( a \right)+\dfrac{f'\left( a \right)}{1!}\left( t-a \right)+\dfrac{f''\left( a \right)}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{{f}^{\left( n \right)}}\left( a \right)}{n!}{{\left( t-a \right)}^{n}} $
Now, let us assume $ f\left( t \right)={{e}^{t}} $
\[{{e}^{t}}={{e}^{a}}+\dfrac{{}_{t=a}\left| \dfrac{d}{dt}\left( {{e}^{t}} \right) \right.}{1!}\left( t-a \right)+\dfrac{{}_{t=a}\left| \dfrac{{{d}^{2}}}{d{{t}^{2}}}\left( {{e}^{t}} \right) \right.}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{}_{t=a}\left| f\left( {{e}^{t}} \right) \right.}{n!}{{\left( t-a \right)}^{n}}\]
Now, we know that no matter how many times we differentiate $ {{e}^{t}} $ , it will still remain $ {{e}^{t}} $ . Thus, we will get,
\[\begin{align}
& {{e}^{t}}={{e}^{a}}+\dfrac{{}_{t=a}\left| {{e}^{t}} \right.}{1!}\left( t-a \right)+\dfrac{{}_{t=a}\left| {{e}^{t}} \right.}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{}_{t=a}\left| {{e}^{t}} \right.}{n!}{{\left( t-a \right)}^{n}} \\
& \Rightarrow {{e}^{t}}={{e}^{a}}+\dfrac{{{e}^{a}}}{1!}\left( t-a \right)+\dfrac{{{e}^{a}}}{2!}{{\left( t-a \right)}^{2}}+......+\dfrac{{{e}^{a}}}{n!}{{\left( t-a \right)}^{n}} \\
\end{align}\]
Now, we will put a = 0 in above equation. Thus, we will get,
\[\begin{align}
& \Rightarrow {{e}^{t}}={{e}^{0}}+\dfrac{{{e}^{0}}}{1!}\left( t-0 \right)+\dfrac{{{e}^{0}}}{2!}{{\left( t-0 \right)}^{2}}+......+\dfrac{{{e}^{0}}}{n!}{{\left( t-0 \right)}^{n}} \\
& \Rightarrow {{e}^{t}}=1+\dfrac{t}{1!}+\dfrac{{{t}^{2}}}{2!}+......+\dfrac{{{t}^{n}}}{n!}.......\left( 2 \right) \\
\end{align}\]
Thus, we have got the expansion of $ {{e}^{t}} $ . Now, we will find the expansion of $ {{e}^{2x+3}} $ . From (1) we know that $ {{e}^{2x+3}}={{e}^{2x}}\times {{e}^{3}} $ . So, we will put $ t=2x $ in (2). Thus, we will get,
\[\Rightarrow {{e}^{t}}=1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+......+\dfrac{{{\left( 2x \right)}^{n}}}{n!}.......\left( 3 \right)\]
Now, we will substitute the value of $ {{e}^{2x}} $ from (3) to (1). Thus, we will get,
$ {{e}^{2x+3}}={{e}^{3}}\times \left[ 1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+......+\dfrac{{{\left( 2x \right)}^{n}}}{n!} \right] $
Now, we have to find the coefficient of $ {{x}^{2}} $ in the above series. The coefficient of $ {{x}^{2}} $ in above series is given by,
$ \begin{align}
& coefficient\ of\ {{x}^{2}}={{e}^{3}}\times \dfrac{{{\left( 2 \right)}^{2}}}{2!} \\
& \Rightarrow coefficient\ of\ {{x}^{2}}={{e}^{3}}\times \dfrac{4}{2} \\
& coefficient\ of\ {{x}^{2}}=2{{e}^{3}} \\
\end{align} $
Note: The Taylor’s expansion which we have applied to a function $ f\left( t \right) $ has certain limitations. To apply this Taylor expansion to any function $ f\left( t \right) $ , $ f\left( t \right) $ should be continuous and it should be infinitely differentiable at “a”. The function $ f\left( t \right)={{e}^{t}} $ is continuous and infinitely differentiable at all points so we have been able to find its expansion.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

