
Find the circular projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $2\hat{i}-3\hat{j}+6\hat{k}$
Answer
509.1k+ views
Hint: We will first of all use the formula of scalar projection of one vector on another. The projection of a vector $\vec{a}$ on another vector $\vec{b}$ is given by $\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{b}} \right|}$
Where, $\vec{a}\cdot \vec{b}$ is the dot product of $\vec{a}\text{ and }\vec{b}$ and $\left| {\vec{b}} \right|$ is the magnitude of vector $\vec{b}$ Then, we will use formula of dot product of two vectors and magnitude of a vector to calculate the end result.
Dot product of two vectors $\vec{p}\text{ and }\vec{q}$ where \[\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}\text{ and }\vec{q}= x'\hat{i}+y'\hat{j}+z'\hat{k}\] given by
\[\vec{p}\cdot \vec{q}=xx'+yy'+zz\text{ }\!\!'\!\!\text{ }\]
Here, we have two vectors given in the question, so we will first find their dot product and then the projection using the above information.
Let us assume both the given vectors as variables.
Let \[\vec{a}=\hat{i}+3\hat{j}+7\hat{k}\text{ and }\vec{b}=2\hat{i}-3\hat{j}+6\hat{k}\]
Complete step-by-step solution:
To solve this question, we will use the formula of the scalar projection of a vector on another vector.
The projection of a vector $\vec{a}$ on another vector $\vec{b}$ is given by $\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{b}} \right|}$
Where, $\vec{a}\cdot \vec{b}$ is the dot product of $\vec{a}\text{ and }\vec{b}$ and $\left| {\vec{b}} \right|$ is the magnitude of vector $\vec{b}$
It works like:
x is projection of \[\vec{a}\text{ on }\vec{b}\]
\[\begin{align}
& OP=\vec{a} \\
& OQ=\vec{b} \\
\end{align}\]
Dot product of two vector $\vec{p}\text{ and }\vec{q}$ where \[\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}\text{ and }\vec{q}=x'\hat{i}+y'\hat{j}+z'\hat{k}\] given by
\[\vec{p}\cdot \vec{q}=xx'+yy'+zz\text{ }\!\!'\!\!\text{ }\]
So, using this formula of dot product we will first of all find dot product of $\vec{a}\text{ and }\vec{b}$
Dot product of $\vec{a}\text{ and }\vec{b}$ is given as below:
\[\begin{align}
& \vec{a}\cdot \vec{b}=\left( \hat{i}+3\hat{j}+7\hat{k} \right)\cdot \left( 2\hat{i}-3\hat{j}+6\hat{k} \right) \\
& \vec{a}\cdot \vec{b}=2+3(-3)+7(6) \\
& \vec{a}\cdot \vec{b}=2-9+42 \\
& \vec{a}\cdot \vec{b}=44-9 \\
& \vec{a}\cdot \vec{b}=35\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }(i) \\
\end{align}\]
Now, finally we will compute magnitude of vector \[\vec{b}=2\hat{i}-3\hat{j}+6\hat{k}\]
A vector \[\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}\text{ }\] has its magnitude as \[\left| {\vec{p}} \right|=\sqrt{{{\left( x \right)}^{2}}+{{\left( y \right)}^{2}}+{{\left( z \right)}^{2}}}\]
Using this formula above, we have magnitude of vector $\vec{b}$ as
\[\begin{align}
& \left| {\vec{b}} \right|=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( 6 \right)}^{2}}} \\
& \left| {\vec{b}} \right|=\sqrt{4+9+36} \\
& \left| {\vec{b}} \right|=\sqrt{49} \\
\end{align}\]
Opening square root \[\left| {\vec{b}} \right|=7\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now finally, we will use the formula of projection of vector \[\vec{a}\text{ on }\vec{b}\] which is given as $\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{b}} \right|}$
Substituting value of $\vec{a}\cdot \vec{b}\text{ and }\left| {\vec{b}} \right|$ from equation (i) and (ii) we get:
\[\begin{align}
& \text{Projection of}~\text{ }\vec{a}\text{ on }\vec{b}=\dfrac{35}{7} \\
& \text{Projection of}~\text{ }\vec{a}\text{ on }\vec{b}=5 \\
\end{align}\]
Therefore, the value of projection of \[\vec{a}\text{ on }\vec{b}\text{ is 5}\].
Note: The key point to note in this question is that, at the point where we used $\left| {\vec{b}} \right|=\sqrt{49}$ and in normal cases $\left| {\vec{b}} \right|=\pm 7$ because square root always opens up with both positive and negative sign. But, here we have only taken +7 because we have $\left| {\vec{b}} \right|$ at LHS and value of mode is always positive. So, -7 is ignored. While applying the formula for projection of $\vec{a}\text{ on }\vec{b}$ we divide by magnitude of $\vec{b}$ and not $\vec{a}$ so, be careful not to make this mistake.
Where, $\vec{a}\cdot \vec{b}$ is the dot product of $\vec{a}\text{ and }\vec{b}$ and $\left| {\vec{b}} \right|$ is the magnitude of vector $\vec{b}$ Then, we will use formula of dot product of two vectors and magnitude of a vector to calculate the end result.
Dot product of two vectors $\vec{p}\text{ and }\vec{q}$ where \[\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}\text{ and }\vec{q}= x'\hat{i}+y'\hat{j}+z'\hat{k}\] given by
\[\vec{p}\cdot \vec{q}=xx'+yy'+zz\text{ }\!\!'\!\!\text{ }\]
Here, we have two vectors given in the question, so we will first find their dot product and then the projection using the above information.
Let us assume both the given vectors as variables.
Let \[\vec{a}=\hat{i}+3\hat{j}+7\hat{k}\text{ and }\vec{b}=2\hat{i}-3\hat{j}+6\hat{k}\]
Complete step-by-step solution:
To solve this question, we will use the formula of the scalar projection of a vector on another vector.
The projection of a vector $\vec{a}$ on another vector $\vec{b}$ is given by $\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{b}} \right|}$
Where, $\vec{a}\cdot \vec{b}$ is the dot product of $\vec{a}\text{ and }\vec{b}$ and $\left| {\vec{b}} \right|$ is the magnitude of vector $\vec{b}$
It works like:

x is projection of \[\vec{a}\text{ on }\vec{b}\]
\[\begin{align}
& OP=\vec{a} \\
& OQ=\vec{b} \\
\end{align}\]
Dot product of two vector $\vec{p}\text{ and }\vec{q}$ where \[\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}\text{ and }\vec{q}=x'\hat{i}+y'\hat{j}+z'\hat{k}\] given by
\[\vec{p}\cdot \vec{q}=xx'+yy'+zz\text{ }\!\!'\!\!\text{ }\]
So, using this formula of dot product we will first of all find dot product of $\vec{a}\text{ and }\vec{b}$
Dot product of $\vec{a}\text{ and }\vec{b}$ is given as below:
\[\begin{align}
& \vec{a}\cdot \vec{b}=\left( \hat{i}+3\hat{j}+7\hat{k} \right)\cdot \left( 2\hat{i}-3\hat{j}+6\hat{k} \right) \\
& \vec{a}\cdot \vec{b}=2+3(-3)+7(6) \\
& \vec{a}\cdot \vec{b}=2-9+42 \\
& \vec{a}\cdot \vec{b}=44-9 \\
& \vec{a}\cdot \vec{b}=35\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }(i) \\
\end{align}\]
Now, finally we will compute magnitude of vector \[\vec{b}=2\hat{i}-3\hat{j}+6\hat{k}\]
A vector \[\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}\text{ }\] has its magnitude as \[\left| {\vec{p}} \right|=\sqrt{{{\left( x \right)}^{2}}+{{\left( y \right)}^{2}}+{{\left( z \right)}^{2}}}\]
Using this formula above, we have magnitude of vector $\vec{b}$ as
\[\begin{align}
& \left| {\vec{b}} \right|=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( 6 \right)}^{2}}} \\
& \left| {\vec{b}} \right|=\sqrt{4+9+36} \\
& \left| {\vec{b}} \right|=\sqrt{49} \\
\end{align}\]
Opening square root \[\left| {\vec{b}} \right|=7\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now finally, we will use the formula of projection of vector \[\vec{a}\text{ on }\vec{b}\] which is given as $\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{b}} \right|}$
Substituting value of $\vec{a}\cdot \vec{b}\text{ and }\left| {\vec{b}} \right|$ from equation (i) and (ii) we get:
\[\begin{align}
& \text{Projection of}~\text{ }\vec{a}\text{ on }\vec{b}=\dfrac{35}{7} \\
& \text{Projection of}~\text{ }\vec{a}\text{ on }\vec{b}=5 \\
\end{align}\]
Therefore, the value of projection of \[\vec{a}\text{ on }\vec{b}\text{ is 5}\].
Note: The key point to note in this question is that, at the point where we used $\left| {\vec{b}} \right|=\sqrt{49}$ and in normal cases $\left| {\vec{b}} \right|=\pm 7$ because square root always opens up with both positive and negative sign. But, here we have only taken +7 because we have $\left| {\vec{b}} \right|$ at LHS and value of mode is always positive. So, -7 is ignored. While applying the formula for projection of $\vec{a}\text{ on }\vec{b}$ we divide by magnitude of $\vec{b}$ and not $\vec{a}$ so, be careful not to make this mistake.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
