
How to find the central angle of a pie chart for the section of the pie chart that represents \[20\% \] of the pie?
Answer
552k+ views
Hint: A pie chart is a circular representation. The collection of data is represented as a form of a circular graph. Pie charts are basically very useful in representing that type of data where we represent a different percentage of a whole. The slices of pie show the relative size of the data. It is a type of pictorial representation of data.
Complete step by step solution:
According to the question, we have to find the angle of the area which represents 20% of the total pie chart. In this figure, the required area or the 20% area is shaded with orange color.
Now,
As we know the total angle of a circle = $2\pi $or 360°
And the pie chart represents data of a whole, that is, 100%
So, the 100% represented in pie chart = $2\pi $
So, according to the question we want the area of 20% region
100% = $2\pi $
1% = $\dfrac{{2\pi }}{{100}}$ (Dividing both side with 100)
20% = $20 \times \dfrac{{2\pi}}{{100}}$ (Multiply both side with 20)
20% = $\dfrac{{2\pi }}{5}$
So the angle of the 20% region is $\dfrac{{2\pi }}{5}$.
And as we know that the value of $\pi = \dfrac{{22}}{7}$
So the area of 20% = $\dfrac{{2 \times 22}}{{7 \times 5}}$ = 1.26°.
So, our answer is $\dfrac{{2\pi }}{5}$ in radian and 1.26° in degree.
Note: In a pie chart the complete 360° represents 100% of the data. The internal angle of a circle is 360° or $2\pi $. It is to be noted that not only the angle is divided this way, but the area of the region is also divided. If you find their ratio, you will find that the ratio of angles and the ratio of areas will be equal.
Complete step by step solution:
According to the question, we have to find the angle of the area which represents 20% of the total pie chart. In this figure, the required area or the 20% area is shaded with orange color.
Now,
As we know the total angle of a circle = $2\pi $or 360°
And the pie chart represents data of a whole, that is, 100%
So, the 100% represented in pie chart = $2\pi $
So, according to the question we want the area of 20% region
100% = $2\pi $
1% = $\dfrac{{2\pi }}{{100}}$ (Dividing both side with 100)
20% = $20 \times \dfrac{{2\pi}}{{100}}$ (Multiply both side with 20)
20% = $\dfrac{{2\pi }}{5}$
So the angle of the 20% region is $\dfrac{{2\pi }}{5}$.
And as we know that the value of $\pi = \dfrac{{22}}{7}$
So the area of 20% = $\dfrac{{2 \times 22}}{{7 \times 5}}$ = 1.26°.
So, our answer is $\dfrac{{2\pi }}{5}$ in radian and 1.26° in degree.
Note: In a pie chart the complete 360° represents 100% of the data. The internal angle of a circle is 360° or $2\pi $. It is to be noted that not only the angle is divided this way, but the area of the region is also divided. If you find their ratio, you will find that the ratio of angles and the ratio of areas will be equal.
Recently Updated Pages
Sam invested Rs15000 at 10 per annum for one year If class 8 maths CBSE

Magesh invested 5000 at 12 pa for one year If the interest class 8 maths CBSE

Arnavs father is 49 years old He is nine years older class 8 maths CBSE

2 pipes running together can fill a cistern in 6 minutes class 8 maths CBSE

If a man were to sell his handcart for Rs720 he would class 8 maths CBSE

By using the formula find the amount and compound interest class 8 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Give me the opposite gender of Duck class 8 english CBSE

Application to your principal for the character ce class 8 english CBSE

Full form of STD, ISD and PCO

