
Find the area of the Quadrilateral ABCD whose vertices are A ( -3, -1), B (-2, -4), C (4, -1) and D (3,4)
Answer
610.5k+ views
Hint- Proceed the solution of this question by dividing the quadrilateral in two triangles (using either of the diagonals), calculate the (positive value of) the areas of each triangle, and add these values to get the total area of the quadrilateral.
Complete step-by-step answer:
Let the vertices of the quadrilateral be A (-3, -1), B (-2, -4), C (4, -1) and D (3, 4).
Let AC be the diagonal of quadrilateral ABCD.
In the following figure, quadrilateral ABCD has been divided into ΔABC and ΔADC
Therefore,
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC ………… (1)
We know that,
Area of triangle = \[\dfrac{1}{2}\left| {[{{\text{x}}_1}({{\text{y}}_2} - {{\text{y}}_3}) + {{\text{x}}_2}({{\text{y}}_3} - {{\text{y}}_1}) + {{\text{x}}_3}({{\text{y}}_1} - {{\text{y}}_2})]} \right|\]
Thus,
Let triangle be ABC, where A= (−3, −1), B= (−2, −4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,B $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = - 2,{{\text{y}}_2} = - 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ABC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) - ( - 1)} \right) + ( - 2) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - ( - 4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) + 1} \right) + ( - 2) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) + 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( { - 3} \right) + ( - 2) \times \left( {(0} \right) + (4) \times \left( 3 \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[9 + 0 + 12]} \right|\]
⇒\[\dfrac{1}{2}\left| {[21]} \right| = \dfrac{{21}}{2}\] Sq. units
Now let triangle be ADC, where A= (−3, −1), D= (3, 4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,D $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = 3,{{\text{y}}_2} = 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ADC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) - ( - 1)} \right) + (3) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - (4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) + 1} \right) + (3) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) - 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( 5 \right) + (3) \times \left( 0 \right) + (4) \times \left( { - 5} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 15 + 0 - 20]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 35]} \right| = \left| {\dfrac{{ - 35}}{2}} \right| = \dfrac{{35}}{2}\] Sq. units
Thus,
Substitute these values in equation (1), we have
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC
Area of quadrilateral ABCD = \[\dfrac{{21}}{2}{\text{ + }}\dfrac{{35}}{2} = \dfrac{{56}}{2} = 28\] Sq. units
Hence, the area of the quadrilateral is 28 square units.
Note- In this particular question, sometimes it’s difficult to remember the formula of Area of triangle
which states above so there is also one other form of Area of triangle
Formula in determinant form which is as Area of triangle = $\left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_1}}&{{{\text{y}}_1}}&1 \\
{{{\text{x}}_2}}&{{{\text{y}}_2}}&1 \\
{{{\text{x}}_3}}&{{{\text{y}}_3}}&1
\end{array}} \right|} \right|$
We can also find the area of a triangle using this formula.
Complete step-by-step answer:
Let the vertices of the quadrilateral be A (-3, -1), B (-2, -4), C (4, -1) and D (3, 4).
Let AC be the diagonal of quadrilateral ABCD.
In the following figure, quadrilateral ABCD has been divided into ΔABC and ΔADC
Therefore,
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC ………… (1)
We know that,
Area of triangle = \[\dfrac{1}{2}\left| {[{{\text{x}}_1}({{\text{y}}_2} - {{\text{y}}_3}) + {{\text{x}}_2}({{\text{y}}_3} - {{\text{y}}_1}) + {{\text{x}}_3}({{\text{y}}_1} - {{\text{y}}_2})]} \right|\]
Thus,
Let triangle be ABC, where A= (−3, −1), B= (−2, −4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,B $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = - 2,{{\text{y}}_2} = - 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ABC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) - ( - 1)} \right) + ( - 2) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - ( - 4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) + 1} \right) + ( - 2) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) + 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( { - 3} \right) + ( - 2) \times \left( {(0} \right) + (4) \times \left( 3 \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[9 + 0 + 12]} \right|\]
⇒\[\dfrac{1}{2}\left| {[21]} \right| = \dfrac{{21}}{2}\] Sq. units
Now let triangle be ADC, where A= (−3, −1), D= (3, 4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,D $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = 3,{{\text{y}}_2} = 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ADC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) - ( - 1)} \right) + (3) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - (4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) + 1} \right) + (3) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) - 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( 5 \right) + (3) \times \left( 0 \right) + (4) \times \left( { - 5} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 15 + 0 - 20]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 35]} \right| = \left| {\dfrac{{ - 35}}{2}} \right| = \dfrac{{35}}{2}\] Sq. units
Thus,
Substitute these values in equation (1), we have
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC
Area of quadrilateral ABCD = \[\dfrac{{21}}{2}{\text{ + }}\dfrac{{35}}{2} = \dfrac{{56}}{2} = 28\] Sq. units
Hence, the area of the quadrilateral is 28 square units.
Note- In this particular question, sometimes it’s difficult to remember the formula of Area of triangle
which states above so there is also one other form of Area of triangle
Formula in determinant form which is as Area of triangle = $\left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_1}}&{{{\text{y}}_1}}&1 \\
{{{\text{x}}_2}}&{{{\text{y}}_2}}&1 \\
{{{\text{x}}_3}}&{{{\text{y}}_3}}&1
\end{array}} \right|} \right|$
We can also find the area of a triangle using this formula.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

