
Find the area of a quadrant of a circle whose radius is 7 centimeter.
Answer
594.9k+ views
HINT:- Before solving this question, we must know about the Quadrant of a circle.
QUADRANT OF A CIRCLE: A quarter of a circle, i.e. \[\dfrac{1}{4}\] of a circle, which is made by two radiuses at right angles and the connecting arc, is called a quadrant of the circle.
Complete step-by-step answer:
Let us firstly calculate the area of the circle.
\[\begin{align}
& =\pi {{r}^{2}} \\
& =\dfrac{22}{7}\times 7\times 7=154c{{m}^{2}} \\
\end{align}\]
Now, as we have found the area of the circle, let us divide 154 square centimeters by 4 to find the area of the quadrant of the circle.
\[\dfrac{154\text{ }}{4}=\text{ }38.5\text{ }c{{m}^{2}}\]
Therefore, the area of the quadrant of the circle with a radius of 7 centimeter is 38.5 square cm.
NOTE:- The students must know the formula that is used in the above solution to calculate the area of a quadrant of a circle. If the students do not know the formula to calculate the area of a quadrant of a circle, then he/she will not be able to solve this question. Here is the formula:-
To calculate the area of a quadrant of a circle, we must know the area of the circle.
We know that the area of a circle is \[\pi {{r}^{2}}\] . \[\]
Now, to calculate the area of a quadrant, we need to divide the area of the circle by 4 (as four quadrants make a circle). So, we get,
Area of a quadrant, A= \[\dfrac{\left( \pi {{r}^{2}} \right)}{4}\]
Now, to find the area of a quadrant of a circle, we firstly calculate the area of the circle by the formula
\[\pi {{r}^{2}}\] and then we divide it by 4.
QUADRANT OF A CIRCLE: A quarter of a circle, i.e. \[\dfrac{1}{4}\] of a circle, which is made by two radiuses at right angles and the connecting arc, is called a quadrant of the circle.
Complete step-by-step answer:
Let us firstly calculate the area of the circle.
\[\begin{align}
& =\pi {{r}^{2}} \\
& =\dfrac{22}{7}\times 7\times 7=154c{{m}^{2}} \\
\end{align}\]
Now, as we have found the area of the circle, let us divide 154 square centimeters by 4 to find the area of the quadrant of the circle.
\[\dfrac{154\text{ }}{4}=\text{ }38.5\text{ }c{{m}^{2}}\]
Therefore, the area of the quadrant of the circle with a radius of 7 centimeter is 38.5 square cm.
NOTE:- The students must know the formula that is used in the above solution to calculate the area of a quadrant of a circle. If the students do not know the formula to calculate the area of a quadrant of a circle, then he/she will not be able to solve this question. Here is the formula:-
To calculate the area of a quadrant of a circle, we must know the area of the circle.
We know that the area of a circle is \[\pi {{r}^{2}}\] . \[\]
Now, to calculate the area of a quadrant, we need to divide the area of the circle by 4 (as four quadrants make a circle). So, we get,
Area of a quadrant, A= \[\dfrac{\left( \pi {{r}^{2}} \right)}{4}\]
Now, to find the area of a quadrant of a circle, we firstly calculate the area of the circle by the formula
\[\pi {{r}^{2}}\] and then we divide it by 4.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

