
Find the area lying above X-axis and included between the circle $ {x^2} + {y^2} = 8x $ and inside the parabola $ {y^2} = 4x. $
Answer
582.3k+ views
Hint: $ \int\limits_a^b {f(x)dx} $ represents area under the curve $ f(x) $ between the points $ x = a $ and $ x = b $ above X-axis
Complete step-by-step answer:
Since equation of circle with center $ (h,k) $ and radius $ r $ is given by equation,
$ {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} $
We convert our equation to the above form to get the coordinates of the center of the circle and the radius of the circle.
We have
$ {x^2} + {y^2} = 8x $ . . . (1)
Rearranging it, we get
$ {x^2} - 8x + {y^2} = 0 $
$ \Rightarrow {x^2} - 2 \times 4 \times x + {y^2} = 0 $
Add $ {4^2} $ to both the sides
$ \Rightarrow {x^2} - 2 \times 4 \times x + {4^2} + {y^2} = {4^2} $
$ \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = {4^2} $ $ \left( {\because {{(a - b)}^2} = {a^2} + 2ab + {b^2}} \right) $ . . . (2)
So, circle has centers $ \left( {4,0} \right) $ and radius $ = 4 $
Equation of parabola with vertex at the origin is given by
$ {y^2} = 4ax $
We have the equation of parabola as
$ {y^2} = 4x $ . . . (3)
Thus, here $ a = 1 $ and the parabola has vertex at the origin.
To find the point of intersection of parabola and circle, put the value of $ {y^2} $ from equation (3) into equation (1)
Therefore, equation (1) becomes
$ {x^2} + 4x = 8x $
Re-arranging it, we get
$ {x^2} + 4x - 8x = 0 $
$ \Rightarrow {x^2} - 4x = 0 $
$ \Rightarrow x(x - 4) = 0 $
$ \Rightarrow x = 0 $ or $ x = 4 $
Therefore, the parabola and the circle are intersecting at points $ x = 0 $ and $ x = 4 $
Now, using equation (2), equation (3) and the point of intersections, we can draw the graph as
We need to find the area of the shaded region.
Now, we know that
$ \int\limits_a^b {f(x)dx} $ represents area under the curve $ f(x) $ between the points $ x = a $ and $ x = b $ above X-axis
The area in the shaded region is under two curves
$ {y^2} = 4x $ from $ x = 0 $ to $ x = 4 $
And
$ {\left( {x - 4} \right)^2} + {y^2} = {4^2} $ from $ x = 4 $ to $ x = 8 $
Let the required area in the shaded region is given by $ A $
Then
$ A = \int\limits_0^4 {{f_1}(x)dx} + \int\limits_4^8 {{f_2}(x)dx} $ . . . (1)
Where,
$ {f_1}(x) = y = \sqrt {4x} $
And
$ {f_2}(x) = y = \sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} $
$ \Rightarrow A = \int\limits_0^4 {\sqrt {4x} dx} + \int\limits_4^8 {\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} dx} $ . . . (4)
Let $ {I_1} = \int\limits_0^4 {\sqrt {4x} dx} $
$ \Rightarrow {I_1} = 2\int\limits_0^4 {\sqrt x dx} $ $ \left( {\because \int {kf(x)dx = k\int {f(x)dx} } } \right) $
$ \Rightarrow {I_1} = 2\int\limits_0^4 {{x^{\dfrac{1}{2}}}dx} $
$ = 2\left[ {\dfrac{{{x^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right]_0^4 $ $ \left( {\because \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C} \right) $
$ = 2\left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_0^4 $
Substituting the upper and lower limits and simplifying it, we get
$ = \dfrac{4}{3}\left[ {{4^{\dfrac{3}{2}}} - 0} \right] $ $ \left( {\because \left[ {F(x)} \right]_a^b = F(b) - F(a)} \right) $
$ = \dfrac{4}{3} \times {2^3} $
$ \Rightarrow {I_1} = \dfrac{{32}}{3} $ . . . (5)
Let $ {I_2} = \int\limits_4^8 {\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} dx} $
We know that
$ \int {\sqrt {{a^2} - {x^2}} dx = } \dfrac{x}{2}\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C $
Using this formula, we can write
\[{I_2} = \left[ {\dfrac{{x - 4}}{2}\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{x - 4}}{4}} \right)} \right]_4^8\]
$ \Rightarrow {I_2} = \left[ {\dfrac{{8 - 4}}{2}\sqrt {{4^2} - {{\left( {8 - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{8 - 4}}{4}} \right) - \left( {\dfrac{{4 - 4}}{2}\sqrt {{4^2} - {{\left( {4 - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{4 - 4}}{4}} \right)} \right)} \right] $
By simplifying it, we get
$ {I_2} = \dfrac{4}{2}\sqrt {{4^2} - {{\left( 4 \right)}^2}} + \dfrac{{{4^2}}}{2}{\sin ^{ - 1}}\left( {\dfrac{4}{4}} \right) - 0 + 0 $ $ \left( {\because {{\sin }^{ - 1}}(0) = 0} \right) $
$ \Rightarrow {I_2} = \dfrac{{16}}{2}{\sin ^{ - 1}}(1) $
$ \Rightarrow {I_2} = 8 \times \dfrac{\pi }{2} $ $ \left( {\because {{\sin }^{ - 1}}(1) = \dfrac{\pi }{2}} \right) $
$ \Rightarrow {I_2} = 4\pi $ . . . (6)
By substituting the values of $ {I_1} $ and $ {I_2} $ from equation (5) and (6) into equation (4), we get
$ A = \dfrac{{32}}{3} + 4\pi $ sq. units
Therefore, the required area is, $ \dfrac{{32}}{3} + 4\pi $ sq. units
Note: It is extremely important to note that $ \int\limits_a^b {f(x)dx} $ gives the area under the curve $ f(x) $ and above the X-axis. If the curve is under the X-axis then this integral will give a negative answer. But the area cannot be negative. Therefore, whenever the curve is under X-axis, we will write the above integral in mod. i.e. $ \left| {\int\limits_a^b {f(x)dx} } \right| $
Complete step-by-step answer:
Since equation of circle with center $ (h,k) $ and radius $ r $ is given by equation,
$ {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} $
We convert our equation to the above form to get the coordinates of the center of the circle and the radius of the circle.
We have
$ {x^2} + {y^2} = 8x $ . . . (1)
Rearranging it, we get
$ {x^2} - 8x + {y^2} = 0 $
$ \Rightarrow {x^2} - 2 \times 4 \times x + {y^2} = 0 $
Add $ {4^2} $ to both the sides
$ \Rightarrow {x^2} - 2 \times 4 \times x + {4^2} + {y^2} = {4^2} $
$ \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = {4^2} $ $ \left( {\because {{(a - b)}^2} = {a^2} + 2ab + {b^2}} \right) $ . . . (2)
So, circle has centers $ \left( {4,0} \right) $ and radius $ = 4 $
Equation of parabola with vertex at the origin is given by
$ {y^2} = 4ax $
We have the equation of parabola as
$ {y^2} = 4x $ . . . (3)
Thus, here $ a = 1 $ and the parabola has vertex at the origin.
To find the point of intersection of parabola and circle, put the value of $ {y^2} $ from equation (3) into equation (1)
Therefore, equation (1) becomes
$ {x^2} + 4x = 8x $
Re-arranging it, we get
$ {x^2} + 4x - 8x = 0 $
$ \Rightarrow {x^2} - 4x = 0 $
$ \Rightarrow x(x - 4) = 0 $
$ \Rightarrow x = 0 $ or $ x = 4 $
Therefore, the parabola and the circle are intersecting at points $ x = 0 $ and $ x = 4 $
Now, using equation (2), equation (3) and the point of intersections, we can draw the graph as
We need to find the area of the shaded region.
Now, we know that
$ \int\limits_a^b {f(x)dx} $ represents area under the curve $ f(x) $ between the points $ x = a $ and $ x = b $ above X-axis
The area in the shaded region is under two curves
$ {y^2} = 4x $ from $ x = 0 $ to $ x = 4 $
And
$ {\left( {x - 4} \right)^2} + {y^2} = {4^2} $ from $ x = 4 $ to $ x = 8 $
Let the required area in the shaded region is given by $ A $
Then
$ A = \int\limits_0^4 {{f_1}(x)dx} + \int\limits_4^8 {{f_2}(x)dx} $ . . . (1)
Where,
$ {f_1}(x) = y = \sqrt {4x} $
And
$ {f_2}(x) = y = \sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} $
$ \Rightarrow A = \int\limits_0^4 {\sqrt {4x} dx} + \int\limits_4^8 {\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} dx} $ . . . (4)
Let $ {I_1} = \int\limits_0^4 {\sqrt {4x} dx} $
$ \Rightarrow {I_1} = 2\int\limits_0^4 {\sqrt x dx} $ $ \left( {\because \int {kf(x)dx = k\int {f(x)dx} } } \right) $
$ \Rightarrow {I_1} = 2\int\limits_0^4 {{x^{\dfrac{1}{2}}}dx} $
$ = 2\left[ {\dfrac{{{x^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right]_0^4 $ $ \left( {\because \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C} \right) $
$ = 2\left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_0^4 $
Substituting the upper and lower limits and simplifying it, we get
$ = \dfrac{4}{3}\left[ {{4^{\dfrac{3}{2}}} - 0} \right] $ $ \left( {\because \left[ {F(x)} \right]_a^b = F(b) - F(a)} \right) $
$ = \dfrac{4}{3} \times {2^3} $
$ \Rightarrow {I_1} = \dfrac{{32}}{3} $ . . . (5)
Let $ {I_2} = \int\limits_4^8 {\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} dx} $
We know that
$ \int {\sqrt {{a^2} - {x^2}} dx = } \dfrac{x}{2}\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C $
Using this formula, we can write
\[{I_2} = \left[ {\dfrac{{x - 4}}{2}\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{x - 4}}{4}} \right)} \right]_4^8\]
$ \Rightarrow {I_2} = \left[ {\dfrac{{8 - 4}}{2}\sqrt {{4^2} - {{\left( {8 - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{8 - 4}}{4}} \right) - \left( {\dfrac{{4 - 4}}{2}\sqrt {{4^2} - {{\left( {4 - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{4 - 4}}{4}} \right)} \right)} \right] $
By simplifying it, we get
$ {I_2} = \dfrac{4}{2}\sqrt {{4^2} - {{\left( 4 \right)}^2}} + \dfrac{{{4^2}}}{2}{\sin ^{ - 1}}\left( {\dfrac{4}{4}} \right) - 0 + 0 $ $ \left( {\because {{\sin }^{ - 1}}(0) = 0} \right) $
$ \Rightarrow {I_2} = \dfrac{{16}}{2}{\sin ^{ - 1}}(1) $
$ \Rightarrow {I_2} = 8 \times \dfrac{\pi }{2} $ $ \left( {\because {{\sin }^{ - 1}}(1) = \dfrac{\pi }{2}} \right) $
$ \Rightarrow {I_2} = 4\pi $ . . . (6)
By substituting the values of $ {I_1} $ and $ {I_2} $ from equation (5) and (6) into equation (4), we get
$ A = \dfrac{{32}}{3} + 4\pi $ sq. units
Therefore, the required area is, $ \dfrac{{32}}{3} + 4\pi $ sq. units
Note: It is extremely important to note that $ \int\limits_a^b {f(x)dx} $ gives the area under the curve $ f(x) $ and above the X-axis. If the curve is under the X-axis then this integral will give a negative answer. But the area cannot be negative. Therefore, whenever the curve is under X-axis, we will write the above integral in mod. i.e. $ \left| {\int\limits_a^b {f(x)dx} } \right| $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

