Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the area lying above X-axis and included between the circle $ {x^2} + {y^2} = 8x $ and inside the parabola $ {y^2} = 4x. $

Answer
VerifiedVerified
563.4k+ views
Hint: $ \int\limits_a^b {f(x)dx} $ represents area under the curve $ f(x) $ between the points $ x = a $ and $ x = b $ above X-axis

Complete step-by-step answer:
Since equation of circle with center $ (h,k) $ and radius $ r $ is given by equation,
 $ {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} $
We convert our equation to the above form to get the coordinates of the center of the circle and the radius of the circle.
We have
 $ {x^2} + {y^2} = 8x $ . . . (1)
Rearranging it, we get
 $ {x^2} - 8x + {y^2} = 0 $
 $ \Rightarrow {x^2} - 2 \times 4 \times x + {y^2} = 0 $
Add $ {4^2} $ to both the sides
 $ \Rightarrow {x^2} - 2 \times 4 \times x + {4^2} + {y^2} = {4^2} $
 $ \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = {4^2} $ $ \left( {\because {{(a - b)}^2} = {a^2} + 2ab + {b^2}} \right) $ . . . (2)
So, circle has centers $ \left( {4,0} \right) $ and radius $ = 4 $
Equation of parabola with vertex at the origin is given by
 $ {y^2} = 4ax $
We have the equation of parabola as
 $ {y^2} = 4x $ . . . (3)
Thus, here $ a = 1 $ and the parabola has vertex at the origin.
To find the point of intersection of parabola and circle, put the value of $ {y^2} $ from equation (3) into equation (1)
Therefore, equation (1) becomes
 $ {x^2} + 4x = 8x $
Re-arranging it, we get
 $ {x^2} + 4x - 8x = 0 $
 $ \Rightarrow {x^2} - 4x = 0 $
 $ \Rightarrow x(x - 4) = 0 $
 $ \Rightarrow x = 0 $ or $ x = 4 $
Therefore, the parabola and the circle are intersecting at points $ x = 0 $ and $ x = 4 $
Now, using equation (2), equation (3) and the point of intersections, we can draw the graph as
seo images

We need to find the area of the shaded region.
Now, we know that
 $ \int\limits_a^b {f(x)dx} $ represents area under the curve $ f(x) $ between the points $ x = a $ and $ x = b $ above X-axis
The area in the shaded region is under two curves
 $ {y^2} = 4x $ from $ x = 0 $ to $ x = 4 $
And
 $ {\left( {x - 4} \right)^2} + {y^2} = {4^2} $ from $ x = 4 $ to $ x = 8 $
Let the required area in the shaded region is given by $ A $
Then
 $ A = \int\limits_0^4 {{f_1}(x)dx} + \int\limits_4^8 {{f_2}(x)dx} $ . . . (1)
Where,
 $ {f_1}(x) = y = \sqrt {4x} $
And
 $ {f_2}(x) = y = \sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} $
 $ \Rightarrow A = \int\limits_0^4 {\sqrt {4x} dx} + \int\limits_4^8 {\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} dx} $ . . . (4)
Let $ {I_1} = \int\limits_0^4 {\sqrt {4x} dx} $
 $ \Rightarrow {I_1} = 2\int\limits_0^4 {\sqrt x dx} $ $ \left( {\because \int {kf(x)dx = k\int {f(x)dx} } } \right) $
 $ \Rightarrow {I_1} = 2\int\limits_0^4 {{x^{\dfrac{1}{2}}}dx} $
 $ = 2\left[ {\dfrac{{{x^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right]_0^4 $ $ \left( {\because \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C} \right) $
 $ = 2\left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_0^4 $
Substituting the upper and lower limits and simplifying it, we get
 $ = \dfrac{4}{3}\left[ {{4^{\dfrac{3}{2}}} - 0} \right] $ $ \left( {\because \left[ {F(x)} \right]_a^b = F(b) - F(a)} \right) $
 $ = \dfrac{4}{3} \times {2^3} $
 $ \Rightarrow {I_1} = \dfrac{{32}}{3} $ . . . (5)
Let $ {I_2} = \int\limits_4^8 {\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} dx} $
We know that
 $ \int {\sqrt {{a^2} - {x^2}} dx = } \dfrac{x}{2}\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C $
Using this formula, we can write
\[{I_2} = \left[ {\dfrac{{x - 4}}{2}\sqrt {{4^2} - {{\left( {x - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{x - 4}}{4}} \right)} \right]_4^8\]
 $ \Rightarrow {I_2} = \left[ {\dfrac{{8 - 4}}{2}\sqrt {{4^2} - {{\left( {8 - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{8 - 4}}{4}} \right) - \left( {\dfrac{{4 - 4}}{2}\sqrt {{4^2} - {{\left( {4 - 4} \right)}^2}} + \dfrac{{{4^2}}}{2}{{\sin }^{ - 1}}\left( {\dfrac{{4 - 4}}{4}} \right)} \right)} \right] $
By simplifying it, we get
 $ {I_2} = \dfrac{4}{2}\sqrt {{4^2} - {{\left( 4 \right)}^2}} + \dfrac{{{4^2}}}{2}{\sin ^{ - 1}}\left( {\dfrac{4}{4}} \right) - 0 + 0 $ $ \left( {\because {{\sin }^{ - 1}}(0) = 0} \right) $
 $ \Rightarrow {I_2} = \dfrac{{16}}{2}{\sin ^{ - 1}}(1) $
 $ \Rightarrow {I_2} = 8 \times \dfrac{\pi }{2} $ $ \left( {\because {{\sin }^{ - 1}}(1) = \dfrac{\pi }{2}} \right) $
 $ \Rightarrow {I_2} = 4\pi $ . . . (6)
By substituting the values of $ {I_1} $ and $ {I_2} $ from equation (5) and (6) into equation (4), we get
 $ A = \dfrac{{32}}{3} + 4\pi $ sq. units
Therefore, the required area is, $ \dfrac{{32}}{3} + 4\pi $ sq. units

Note: It is extremely important to note that $ \int\limits_a^b {f(x)dx} $ gives the area under the curve $ f(x) $ and above the X-axis. If the curve is under the X-axis then this integral will give a negative answer. But the area cannot be negative. Therefore, whenever the curve is under X-axis, we will write the above integral in mod. i.e. $ \left| {\int\limits_a^b {f(x)dx} } \right| $