
Find the area in(sq. units) of the region bounded by the curve $y = f\left( x \right){\text{ and y}} = g\left( x \right)$ between the lines $2x = 1{\text{ and }}2x = \sqrt 3 $ , when $f\left( x \right){\text{ and }}g\left( x \right)$ are given as:
$f\left( x \right) = \left\{ \begin{gathered}
x,0 \leqslant x < \dfrac{1}{2} \\
\dfrac{1}{2},x = \dfrac{1}{2} \\
1 - x,\dfrac{1}{2} < x \leqslant 1 \\
\end{gathered} \right\}{\text{ }}$ and
${\text{g}}\left( x \right) = {\left( {x - \dfrac{1}{2}} \right)^2},x \in R$
A. $\dfrac{1}{3} + \dfrac{{\sqrt 3 }}{4}$
B. $\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{4}$
C. $\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{4}$
D. $\dfrac{{\sqrt 3 }}{4} - \dfrac{1}{3}$
Answer
531.3k+ views
Hint: First, plot the graph of the given equations and make a rough sketch of the area to be founded.
Then find the limits within which curve is bounded i.e. x=a to x= b. In this question the limits are already given i.e. $x = \dfrac{1}{2}{\text{ }}$to ${\text{ }}x = \dfrac{{\sqrt 3 }}{2}$. These limits will become the limits for the integration.
The area bounded between two curves is given by:
$\int\limits_{x = a}^{x = b} {\left( {{y_2} - {y_1}} \right)dx} $
Where, $y_2$ represents the upper bounding curve and $y_1$ represents the lower bounding curve.
Complete step by step solution:
The given equations are:
$y = {\text{ }}x{\text{ }}$when ${\text{0}} \leqslant x < \dfrac{1}{2}{\text{ }} - - - (i)$
${\text{y = }}\dfrac{1}{2}$ when $x = \dfrac{1}{2}{\text{ - - - - - - - - - - - - - - - - - - - - - - - - - - }}\left( {ii} \right)$
${\text{y = }}1 - x$ when $\dfrac{1}{2} < x \leqslant 1{\text{ - - - - - - - - - - - - - - - - - - }}\left( {iii} \right)$
And ${\text{ }}y = {\left( {x - \dfrac{1}{2}} \right)^2}{\text{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - }}\left( {iv} \right)$
Equation (i) represents a straight line passing through origin, and making an angle of $45^\circ $ with x-axis,
between $x = 0$ and $x = \dfrac{1}{2}$.
Equation (ii) represents the point $\left( {\dfrac{1}{2},\dfrac{1}{2}} \right)$.
Equation (iii) represents a straight line.
Putting $y = 0$ and $x = 0$ respectively in equation (iii), we obtain:
$x = 1$ and $y = 1$ respectively.
So, the straight line passes through points $\left( {1,0} \right)$and $\left( {0,1} \right)$, but required portion is only between $x = \dfrac{1}{2}$and $x = 1$.
Equation (iv) represents a parabola having vertex at $\left( {\dfrac{1}{2},0} \right)$ , and axis along the positive y-axis.
The area bounded by these curves between lines $2x = 1$and $2x = \sqrt 3 $ is shown below.
In order to find the point of intersection of line and parabola we solve the equations (iii) and (iv) simultaneously.
From (iii) we get, $y = 1 - x$
Putting this value of y in (iv), we get:
$1 - x = {\left( {x - \dfrac{1}{2}} \right)^2}$
$1 - x = {\left( {\dfrac{{2x - 1}}{2}} \right)^2}$
\[1 - x = \dfrac{{{{\left( {2x - 1} \right)}^2}}}{4}\]
Using the identity \[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we have
$ \Rightarrow 1 - x = \dfrac{{4{x^2} - 4x + 1}}{4}$
Cross multiplying we have,
$ \Rightarrow 4 - 4x = 4{x^2} - 4x + 1$
Cancelling ‘4x’ we have,
$ \Rightarrow 4{x^2} = 3$
Divide by 4 on both sides of the equation
$ \Rightarrow {x^2} = \dfrac{3}{4}$
Taking square root on both side we have,
$ \Rightarrow x = \dfrac{{\sqrt 3 }}{2}$
Putting $x = \dfrac{{\sqrt 3 }}{2}$ , in equation (iii)
$ \Rightarrow y = 1 - \dfrac{{\sqrt 3 }}{2}$
There intersection point is:
$B\left( {\dfrac{{\sqrt 3 }}{2},1 - \dfrac{{\sqrt 3 }}{2}} \right)$
Now, we have to find the area of the bounded region ABDA.
Area of region ABDA:
= area under line AB – area under the parabola between $x = \dfrac{1}{2}$ and $x = \dfrac{{\sqrt 3 }}{2}$
Area bounded between two curves is given by:
$\int\limits_{{x_1}}^{{x_2}} {\left( {{y_2} - {y_1}} \right)dx} $
Where, y2 represents the upper bounding curve and y1 represents the lower bounding curve.
Here, upper bounding curve is:
${y_2} = 1 - x$
and lower bounding curve is:
${y_1} = {\left( {x - \dfrac{1}{2}} \right)^2}$
Area of region ABDA after substituting the values we have,
$ = \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\left( {1 - x} \right) - {{\left( {x - \dfrac{1}{2}} \right)}^2}} \right)dx} $
Using the identity \[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we have
$ = \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {1 - x - {x^2} + x - \dfrac{1}{4}} \right)dx} $
Cancelling ‘x’ we get:
$ = \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{3}{4} - {x^2}} \right)dx} $
integrating we have,
$ = \left[ {\dfrac{{3x}}{4} - \dfrac{{{x^3}}}{3}} \right]_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}}$
Applying upper and lower bond we have,
$ = \left[ {\dfrac{{3\sqrt 3 }}{8} - \dfrac{{3\sqrt 3 }}{{24}}} \right] - \left[ {\dfrac{3}{8} - \dfrac{1}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{9\sqrt 3 - 3\sqrt 3 }}{{24}}} \right] - \left[ {\dfrac{{9 - 1}}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{3\sqrt 3 - \sqrt 3 }}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{\sqrt 3 (3 - 1)}}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{2\sqrt 3 }}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]$
$ \Rightarrow \dfrac{{\sqrt 3 }}{4} - \dfrac{1}{3}$
So, the correct answer is Option D.
Note: If the functions give are in the form of $x = f\left( y \right)$ and $x = g\left( y \right)$ and bounded by lines $y = c$ and $y = d$ then area Is given by formula:
$ = \int\limits_c^d {\left( {f(y) - g\left( y \right)} \right)dy} $ where $f\left( y \right) > g\left( y \right)$.
Then find the limits within which curve is bounded i.e. x=a to x= b. In this question the limits are already given i.e. $x = \dfrac{1}{2}{\text{ }}$to ${\text{ }}x = \dfrac{{\sqrt 3 }}{2}$. These limits will become the limits for the integration.
The area bounded between two curves is given by:
$\int\limits_{x = a}^{x = b} {\left( {{y_2} - {y_1}} \right)dx} $
Where, $y_2$ represents the upper bounding curve and $y_1$ represents the lower bounding curve.
Complete step by step solution:
The given equations are:
$y = {\text{ }}x{\text{ }}$when ${\text{0}} \leqslant x < \dfrac{1}{2}{\text{ }} - - - (i)$
${\text{y = }}\dfrac{1}{2}$ when $x = \dfrac{1}{2}{\text{ - - - - - - - - - - - - - - - - - - - - - - - - - - }}\left( {ii} \right)$
${\text{y = }}1 - x$ when $\dfrac{1}{2} < x \leqslant 1{\text{ - - - - - - - - - - - - - - - - - - }}\left( {iii} \right)$
And ${\text{ }}y = {\left( {x - \dfrac{1}{2}} \right)^2}{\text{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - }}\left( {iv} \right)$
Equation (i) represents a straight line passing through origin, and making an angle of $45^\circ $ with x-axis,
between $x = 0$ and $x = \dfrac{1}{2}$.
Equation (ii) represents the point $\left( {\dfrac{1}{2},\dfrac{1}{2}} \right)$.
Equation (iii) represents a straight line.
Putting $y = 0$ and $x = 0$ respectively in equation (iii), we obtain:
$x = 1$ and $y = 1$ respectively.
So, the straight line passes through points $\left( {1,0} \right)$and $\left( {0,1} \right)$, but required portion is only between $x = \dfrac{1}{2}$and $x = 1$.
Equation (iv) represents a parabola having vertex at $\left( {\dfrac{1}{2},0} \right)$ , and axis along the positive y-axis.
The area bounded by these curves between lines $2x = 1$and $2x = \sqrt 3 $ is shown below.
In order to find the point of intersection of line and parabola we solve the equations (iii) and (iv) simultaneously.
From (iii) we get, $y = 1 - x$
Putting this value of y in (iv), we get:
$1 - x = {\left( {x - \dfrac{1}{2}} \right)^2}$
$1 - x = {\left( {\dfrac{{2x - 1}}{2}} \right)^2}$
\[1 - x = \dfrac{{{{\left( {2x - 1} \right)}^2}}}{4}\]
Using the identity \[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we have
$ \Rightarrow 1 - x = \dfrac{{4{x^2} - 4x + 1}}{4}$
Cross multiplying we have,
$ \Rightarrow 4 - 4x = 4{x^2} - 4x + 1$
Cancelling ‘4x’ we have,
$ \Rightarrow 4{x^2} = 3$
Divide by 4 on both sides of the equation
$ \Rightarrow {x^2} = \dfrac{3}{4}$
Taking square root on both side we have,
$ \Rightarrow x = \dfrac{{\sqrt 3 }}{2}$
Putting $x = \dfrac{{\sqrt 3 }}{2}$ , in equation (iii)
$ \Rightarrow y = 1 - \dfrac{{\sqrt 3 }}{2}$
There intersection point is:
$B\left( {\dfrac{{\sqrt 3 }}{2},1 - \dfrac{{\sqrt 3 }}{2}} \right)$
Now, we have to find the area of the bounded region ABDA.
Area of region ABDA:
= area under line AB – area under the parabola between $x = \dfrac{1}{2}$ and $x = \dfrac{{\sqrt 3 }}{2}$
Area bounded between two curves is given by:
$\int\limits_{{x_1}}^{{x_2}} {\left( {{y_2} - {y_1}} \right)dx} $
Where, y2 represents the upper bounding curve and y1 represents the lower bounding curve.
Here, upper bounding curve is:
${y_2} = 1 - x$
and lower bounding curve is:
${y_1} = {\left( {x - \dfrac{1}{2}} \right)^2}$
Area of region ABDA after substituting the values we have,
$ = \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\left( {1 - x} \right) - {{\left( {x - \dfrac{1}{2}} \right)}^2}} \right)dx} $
Using the identity \[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we have
$ = \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {1 - x - {x^2} + x - \dfrac{1}{4}} \right)dx} $
Cancelling ‘x’ we get:
$ = \int\limits_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}} {\left( {\dfrac{3}{4} - {x^2}} \right)dx} $
integrating we have,
$ = \left[ {\dfrac{{3x}}{4} - \dfrac{{{x^3}}}{3}} \right]_{\dfrac{1}{2}}^{\dfrac{{\sqrt 3 }}{2}}$
Applying upper and lower bond we have,
$ = \left[ {\dfrac{{3\sqrt 3 }}{8} - \dfrac{{3\sqrt 3 }}{{24}}} \right] - \left[ {\dfrac{3}{8} - \dfrac{1}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{9\sqrt 3 - 3\sqrt 3 }}{{24}}} \right] - \left[ {\dfrac{{9 - 1}}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{3\sqrt 3 - \sqrt 3 }}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{\sqrt 3 (3 - 1)}}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]$
$ \Rightarrow \left[ {\dfrac{{2\sqrt 3 }}{8}} \right] - \left[ {\dfrac{7}{{24}}} \right]$
$ \Rightarrow \dfrac{{\sqrt 3 }}{4} - \dfrac{1}{3}$
So, the correct answer is Option D.
Note: If the functions give are in the form of $x = f\left( y \right)$ and $x = g\left( y \right)$ and bounded by lines $y = c$ and $y = d$ then area Is given by formula:
$ = \int\limits_c^d {\left( {f(y) - g\left( y \right)} \right)dy} $ where $f\left( y \right) > g\left( y \right)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Which prominent US inventor was known as the Wizard class 12 social science CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

What is virtual and erect image ?

Explain the energy losses in the transformer How are class 12 physics CBSE

