
How do you find the area between $ x = 4 - {y^2} $ and $ x = y - 2 $ ?
Answer
524.4k+ views
Hint: In order to find the area, we need to know the region between the equations, and from the equation we can see that the first equation would represent a parabola and the second one would represent a straight line. Compare the two equations to find the points of intersection then using integration find the area inside them.
Formula used:
$ \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
$ \int {adx = } a\int {dx} $
Complete step-by-step answer:
The first Equation given is: $ x = 4 - {y^2} $ and the second is $ x = y - 2 $ .
Since, value of $ x $ is given in both, so comparing the two equations, we get:
$
4 - {y^2} = y - 2 \\
{y^2} + y - 6 = 0 \;
$
Comparing the obtained Quadratic Equation with the standard Quadratic Equation $ a{x^2} + bx + c = 0 $ , we get:
$
a = 1 \\
b = 1 \\
c = - 6 \;
$
Solving for discriminant, we get:
$
D = \sqrt {{b^2} - 4ac} \\
D = \sqrt {{1^2} - 4 \times 1 \times \left( { - 6} \right)} \\
D = \sqrt {1 + 24} \\
D = \sqrt {25} = 5 \;
$
Quadratic Formula to find both roots of a quadratic equation as
$ y_1 = \dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}} $ and $ y_2 = \dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}} $
$ y_1,y_2 $ are root to quadratic equations $ a{x^2} + bx + c $ .
For, $ y_1 $ :
$
y_1 = \dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}} \\
y_1 = \dfrac{{ - 1 + 5}}{{2 \times 1}} = \dfrac{4}{2} = 2 \\
$
For, $ y_2 $ :
$
y_2 = \dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}} \\
y_2 = \dfrac{{ - 1 - 5}}{{2 \times 1}} = \dfrac{{ - 6}}{2} = - 3 \;
$
Hence the factors will be $ (y - y_1)\,and\,(y - y_2)\, $ that is $ (y - 2)\,and\,(y + 3)\, $ .
Putting the values of $ y_1 $ and $ y_2 $ in the equation $ x = y - 2 $ one by one to get $ x_1 $ and $ x_2 $ :
$ x_1 = y_1 - 2 = 2 - 2 = 0 $
$ x_2 = y_2 - 2 = - 3 - 2 = - 5 $
Therefore, the points of intersection are:
$ (x_1,y_1)\,and\,(x_2,y_2)\, $ , which are $ (0,2)\,and\,( - 5, - 3)\, $ .
According to the points obtained, the graph would be:
Since, the starting and ending points for the y-axis are: $ - 3and2 $ .So, the area is starting from $ - 3to2 $ .
Writing the first and second equation in terms of $ y $ and we get:
$ x = 4 - {y^2} = > y = \sqrt {4 - x} $
$ x = y - 2 = > y = x + 2 $
The area under the equation is:
$ A = \int\limits_{ - 3}^2 {\left[ {\left( {4 - {y^2}} \right) - \left( {y - 2} \right)} \right]} dy $
On further solving, we get:
$
A = \int\limits_{ - 3}^2 {\left[ {\left( {4 - {y^2}} \right) - \left( {y - 2} \right)} \right]} dy \\
A = \int\limits_{ - 3}^2 {\left[ {4 - {y^2} - y + 2} \right]} dy \\
A = \int\limits_{ - 3}^2 {\left[ { - {y^2} - y + 6} \right]} dy \\
A = - \int\limits_{ - 3}^2 {{y^2}} dy - \int\limits_{ - 3}^2 y dy + 6\int\limits_{ - 3}^2 {dy} \\
A = - {\left[ {\dfrac{{{y^3}}}{3}} \right]_{ - 3}}^2 - {\left[ {\dfrac{{{y^2}}}{2}} \right]^2}_{ - 3} + 6{\left[ y \right]^2}_{ - 3} \\
A = - \left[ {\dfrac{{{2^3}}}{3} - \dfrac{{{{\left( { - 3} \right)}^3}}}{3}} \right] - \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{{\left( { - 3} \right)}^2}}}{2}} \right] + 6\left[ {2 - \left( { - 3} \right)} \right] \\
A = - \left[ {\dfrac{8}{3} + 9} \right] - \left[ {2 - \dfrac{9}{2}} \right] + 6\left[ {2 + 3} \right] \\
A = - \dfrac{8}{3} - 9 - 2 + \dfrac{9}{2} + 30 \\
A = - \dfrac{8}{3} - 11 + \dfrac{9}{2} + 30 \\
A = \dfrac{{125}}{6} = 20.833 \;
$
Therefore, the area between $ x = 4 - {y^2} $ and $ x = y - 2 $ is $ 20.833 $ sq. units.
So, the correct answer is “ $ 20.833 $ sq. units.”.
Note: It's important to find the intersecting points to know the area covered by the parabola and the straight line.
We can also take the value of $ x $ instead of y to find the area, just the values inside the integration would be written in terms of $ x $ and $ dx $ .
Formula used:
$ \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
$ \int {adx = } a\int {dx} $
Complete step-by-step answer:
The first Equation given is: $ x = 4 - {y^2} $ and the second is $ x = y - 2 $ .
Since, value of $ x $ is given in both, so comparing the two equations, we get:
$
4 - {y^2} = y - 2 \\
{y^2} + y - 6 = 0 \;
$
Comparing the obtained Quadratic Equation with the standard Quadratic Equation $ a{x^2} + bx + c = 0 $ , we get:
$
a = 1 \\
b = 1 \\
c = - 6 \;
$
Solving for discriminant, we get:
$
D = \sqrt {{b^2} - 4ac} \\
D = \sqrt {{1^2} - 4 \times 1 \times \left( { - 6} \right)} \\
D = \sqrt {1 + 24} \\
D = \sqrt {25} = 5 \;
$
Quadratic Formula to find both roots of a quadratic equation as
$ y_1 = \dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}} $ and $ y_2 = \dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}} $
$ y_1,y_2 $ are root to quadratic equations $ a{x^2} + bx + c $ .
For, $ y_1 $ :
$
y_1 = \dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}} \\
y_1 = \dfrac{{ - 1 + 5}}{{2 \times 1}} = \dfrac{4}{2} = 2 \\
$
For, $ y_2 $ :
$
y_2 = \dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}} \\
y_2 = \dfrac{{ - 1 - 5}}{{2 \times 1}} = \dfrac{{ - 6}}{2} = - 3 \;
$
Hence the factors will be $ (y - y_1)\,and\,(y - y_2)\, $ that is $ (y - 2)\,and\,(y + 3)\, $ .
Putting the values of $ y_1 $ and $ y_2 $ in the equation $ x = y - 2 $ one by one to get $ x_1 $ and $ x_2 $ :
$ x_1 = y_1 - 2 = 2 - 2 = 0 $
$ x_2 = y_2 - 2 = - 3 - 2 = - 5 $
Therefore, the points of intersection are:
$ (x_1,y_1)\,and\,(x_2,y_2)\, $ , which are $ (0,2)\,and\,( - 5, - 3)\, $ .
According to the points obtained, the graph would be:
Since, the starting and ending points for the y-axis are: $ - 3and2 $ .So, the area is starting from $ - 3to2 $ .
Writing the first and second equation in terms of $ y $ and we get:
$ x = 4 - {y^2} = > y = \sqrt {4 - x} $
$ x = y - 2 = > y = x + 2 $
The area under the equation is:
$ A = \int\limits_{ - 3}^2 {\left[ {\left( {4 - {y^2}} \right) - \left( {y - 2} \right)} \right]} dy $
On further solving, we get:
$
A = \int\limits_{ - 3}^2 {\left[ {\left( {4 - {y^2}} \right) - \left( {y - 2} \right)} \right]} dy \\
A = \int\limits_{ - 3}^2 {\left[ {4 - {y^2} - y + 2} \right]} dy \\
A = \int\limits_{ - 3}^2 {\left[ { - {y^2} - y + 6} \right]} dy \\
A = - \int\limits_{ - 3}^2 {{y^2}} dy - \int\limits_{ - 3}^2 y dy + 6\int\limits_{ - 3}^2 {dy} \\
A = - {\left[ {\dfrac{{{y^3}}}{3}} \right]_{ - 3}}^2 - {\left[ {\dfrac{{{y^2}}}{2}} \right]^2}_{ - 3} + 6{\left[ y \right]^2}_{ - 3} \\
A = - \left[ {\dfrac{{{2^3}}}{3} - \dfrac{{{{\left( { - 3} \right)}^3}}}{3}} \right] - \left[ {\dfrac{{{2^2}}}{2} - \dfrac{{{{\left( { - 3} \right)}^2}}}{2}} \right] + 6\left[ {2 - \left( { - 3} \right)} \right] \\
A = - \left[ {\dfrac{8}{3} + 9} \right] - \left[ {2 - \dfrac{9}{2}} \right] + 6\left[ {2 + 3} \right] \\
A = - \dfrac{8}{3} - 9 - 2 + \dfrac{9}{2} + 30 \\
A = - \dfrac{8}{3} - 11 + \dfrac{9}{2} + 30 \\
A = \dfrac{{125}}{6} = 20.833 \;
$
Therefore, the area between $ x = 4 - {y^2} $ and $ x = y - 2 $ is $ 20.833 $ sq. units.
So, the correct answer is “ $ 20.833 $ sq. units.”.
Note: It's important to find the intersecting points to know the area covered by the parabola and the straight line.
We can also take the value of $ x $ instead of y to find the area, just the values inside the integration would be written in terms of $ x $ and $ dx $ .
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

