
How do you find the antiderivative of $ \sin x\cos x $ ?
Answer
563.4k+ views
Hint: Derivative means finding a very small part of a whole quantity, so as the name suggests antiderivative means finding the whole quantity from a given small part. Thus we have to find the integration of the given quantity. The function which has to be integrated is a trigonometric function, so we can simplify it by using trigonometric identities and then find its integration.
Complete step-by-step answer:
We have to find $ \int {\sin x\cos x} $
We know that,
$
2\sin x\cos x = \sin 2x \\
\Rightarrow \sin x\cos x = \dfrac{1}{2} \times \sin 2x \;
$
Now $ \int {kx = k\int x } $ , where $ k $ is a constant. So,
$
\int {\sin x\cos x} = \int {\dfrac{1}{2} \times \sin 2x} \\
\Rightarrow \int {\sin x\cos x} = \dfrac{1}{2} \times \int {\sin 2x} ...(1) \;
$
We also know that –
$
\int {\sin \{ f(x)} \} = \dfrac{{ - \cos \{ f(x)\} }}{{f'(x)}} + c \\
\Rightarrow \int {\sin 2x = \dfrac{{ - \cos 2x}}{{\dfrac{{d(2x)}}{{dx}}}}} + c \\
\Rightarrow \int {\sin 2x} = \dfrac{{ - 1}}{2} \times \cos 2x + c \\
$
Using this value in (1), we get –
$
\int {\sin x\cos x} = \dfrac{1}{2} \times \dfrac{{ - 1}}{2} \times \cos 2x + c \\
\Rightarrow \int {\sin x\cos x} = \dfrac{{ - \cos 2x}}{4} + c \;
$
We know, $ \cos 2x = 1 - 2{\sin ^2}x,\,\cos 2x = 2{\cos ^2}x - 1 $
Putting these two values of $ \cos 2x $ in the obtained answer, we get –
$
\int {\sin x\cos x} = \dfrac{{ - (1 - 2{{\sin }^2}x)}}{4} + c \\
\Rightarrow \int {\sin x\cos x} = \dfrac{{ - 1}}{4} + \dfrac{{{{\sin }^2}x}}{2} + c \\
and \\
\int {\sin x\cos x} = \dfrac{{ - (2{{\cos }^2}x - 1)}}{4} + c \\
\int {\sin x\cos x} = \dfrac{{ - {{\cos }^2}x}}{2} + \dfrac{1}{4} + c \;
$
So, the correct answer is “ $\dfrac{{ - 1}}{4} + \dfrac{{{{\sin }^2}x}}{2} + c $ OR $ \dfrac{{ - {{\cos }^2}x}}{2} + \dfrac{1}{4} + c $”.
Note: An integral that is expressed with upper and lower limits is called a definite integral while an indefinite integral is expressed without limits like in this question. The derivative of a function is unique but integral or anti-derivative of a function can be infinite, like in this question, we have found three antiderivatives of the same function. Here, varying the value of the arbitrary constant, one can get different values of integral of a function.
Complete step-by-step answer:
We have to find $ \int {\sin x\cos x} $
We know that,
$
2\sin x\cos x = \sin 2x \\
\Rightarrow \sin x\cos x = \dfrac{1}{2} \times \sin 2x \;
$
Now $ \int {kx = k\int x } $ , where $ k $ is a constant. So,
$
\int {\sin x\cos x} = \int {\dfrac{1}{2} \times \sin 2x} \\
\Rightarrow \int {\sin x\cos x} = \dfrac{1}{2} \times \int {\sin 2x} ...(1) \;
$
We also know that –
$
\int {\sin \{ f(x)} \} = \dfrac{{ - \cos \{ f(x)\} }}{{f'(x)}} + c \\
\Rightarrow \int {\sin 2x = \dfrac{{ - \cos 2x}}{{\dfrac{{d(2x)}}{{dx}}}}} + c \\
\Rightarrow \int {\sin 2x} = \dfrac{{ - 1}}{2} \times \cos 2x + c \\
$
Using this value in (1), we get –
$
\int {\sin x\cos x} = \dfrac{1}{2} \times \dfrac{{ - 1}}{2} \times \cos 2x + c \\
\Rightarrow \int {\sin x\cos x} = \dfrac{{ - \cos 2x}}{4} + c \;
$
We know, $ \cos 2x = 1 - 2{\sin ^2}x,\,\cos 2x = 2{\cos ^2}x - 1 $
Putting these two values of $ \cos 2x $ in the obtained answer, we get –
$
\int {\sin x\cos x} = \dfrac{{ - (1 - 2{{\sin }^2}x)}}{4} + c \\
\Rightarrow \int {\sin x\cos x} = \dfrac{{ - 1}}{4} + \dfrac{{{{\sin }^2}x}}{2} + c \\
and \\
\int {\sin x\cos x} = \dfrac{{ - (2{{\cos }^2}x - 1)}}{4} + c \\
\int {\sin x\cos x} = \dfrac{{ - {{\cos }^2}x}}{2} + \dfrac{1}{4} + c \;
$
So, the correct answer is “ $\dfrac{{ - 1}}{4} + \dfrac{{{{\sin }^2}x}}{2} + c $ OR $ \dfrac{{ - {{\cos }^2}x}}{2} + \dfrac{1}{4} + c $”.
Note: An integral that is expressed with upper and lower limits is called a definite integral while an indefinite integral is expressed without limits like in this question. The derivative of a function is unique but integral or anti-derivative of a function can be infinite, like in this question, we have found three antiderivatives of the same function. Here, varying the value of the arbitrary constant, one can get different values of integral of a function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

