
Find the angle between two vectors $\overrightarrow a $ and $\overrightarrow b $ with magnitudes $\sqrt 3 $ and 2 respectively having $\overrightarrow a \cdot \overrightarrow b = \sqrt 6 $.
Answer
615.3k+ views
Hint: We need to have a basic idea on the vector concept to solve this problem. The angle between two vectors can be found using the dot product of those vectors.
Complete step-by-step answer:
It is given that $\left| {\overrightarrow a } \right| = \sqrt 3 ,\left| {\overrightarrow b } \right| = 2$ and $\overrightarrow a \cdot \overrightarrow b = \sqrt 6 $
Now, we know that $$\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta $$
$\therefore \sqrt 6 = \sqrt 3 \times 2 \times \cos \theta $
$ \Rightarrow \cos \theta = \dfrac{{\sqrt 6 }}{{\sqrt 3 \times 2}}$
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \theta = \dfrac{\pi }{4}$
Hence, the angle between the given vectors $$\overrightarrow a $$ and $\overrightarrow b $ =$\dfrac{\pi }{4}$.
Note: The angle between two vectors $$\overrightarrow a $$ and $\overrightarrow b $ is defined by $$\cos \theta = \dfrac{{\overrightarrow a \cdot \overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}},$$ $\theta $ is the angle between vectors, $$\left| {\overrightarrow a } \right|,\left| {\overrightarrow b } \right|$$ are the magnitudes of the vectors $\overrightarrow a $ and $\overrightarrow b $.
Complete step-by-step answer:
It is given that $\left| {\overrightarrow a } \right| = \sqrt 3 ,\left| {\overrightarrow b } \right| = 2$ and $\overrightarrow a \cdot \overrightarrow b = \sqrt 6 $
Now, we know that $$\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta $$
$\therefore \sqrt 6 = \sqrt 3 \times 2 \times \cos \theta $
$ \Rightarrow \cos \theta = \dfrac{{\sqrt 6 }}{{\sqrt 3 \times 2}}$
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \theta = \dfrac{\pi }{4}$
Hence, the angle between the given vectors $$\overrightarrow a $$ and $\overrightarrow b $ =$\dfrac{\pi }{4}$.
Note: The angle between two vectors $$\overrightarrow a $$ and $\overrightarrow b $ is defined by $$\cos \theta = \dfrac{{\overrightarrow a \cdot \overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}},$$ $\theta $ is the angle between vectors, $$\left| {\overrightarrow a } \right|,\left| {\overrightarrow b } \right|$$ are the magnitudes of the vectors $\overrightarrow a $ and $\overrightarrow b $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

