
Find the angle between any diagonals of a cube.
Answer
567k+ views
Hint: The formula to be used for the for calculating the angle between the two vectors is
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\], where $ \vec a $ and $ \vec b $ are two vectors.
Complete step-by-step answer:
The figure below shows a cube of side length 1, in which OQ and OP are its diagonals. O is the origin of the cube.
From the above figure,
The coordinates of point $ P(1,1,1) $
The coordinates of point $ Q(1,1,0) $
Vector OP is given by,
$ \mathop {OP}\limits^ \to = \hat i + \hat j + \hat k $
The modulus of the vector r is given by,
$ \Rightarrow \vec r = a\hat i + b\hat j + c\hat k $ is $ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of $ \left| {\mathop {OP}\limits^ \to } \right| $ is given by,
$
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt {{1^2} + {1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt 3 \\
$
Vector OQ is given by,
\[\mathop {OQ}\limits^ \to = \hat i + \hat j\]
The modulus of vector OQ is given by,
$
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt {{1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt 2 \\
$
The angle between $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ is given by,
\[\Rightarrow \cos \theta = \dfrac{{\mathop {OP}\limits^ \to .\mathop {OQ}\limits^ \to }}{{\left| {\mathop {OP}\limits^ \to } \right|\left| {\mathop {OQ}\limits^ \to } \right|}} \cdots \left( 1 \right)\]
Substitute the value of $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ in equation (1)
The dot product of same unit vector is $ \hat i.\hat i = 1 $ and that of different unit vector is $ \hat i.\hat j = 0 $
$
\Rightarrow \cos \theta = \dfrac{{1 + 1 + 0}}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{2}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
\theta = {\cos ^{ - 1}}\left( {0.8165} \right) \\
\Rightarrow \theta = {35.26^o} \\
$
Hence, the angle between any two diagonals of a cube is $ {35.26^o} $
Note: The important point that is to be noted are,
The value of vector AB if vector A and vector B are given, is calculated as
$ \left| {\mathop {AB}\limits^ \to } \right| = \mathop B\limits^ \to - \mathop A\limits^ \to $
The modulus of the vector $ \vec r = a\hat i + b\hat j + c\hat k $ is calculated by taking the square root of the sum of the square of the coefficients and is given by the formula
$ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of the vectors tells about the magnitude of the vector.
The angle between the two vectors $ \vec m $ and $ \vec n $ is given by the formula
\[\cos \theta = \dfrac{{\vec m.\vec n}}{{\left| {\vec m} \right|\left| {\vec n} \right|}}\]
If the angle between the vectors is $ \dfrac{\pi }{2} $ , then $ \vec m.\vec n = 0 $
If the angle between the vector is $ 0 $ , then $ \vec m.\vec n = \left| {\vec m} \right|\left| {\vec n} \right| $ , and
If the angle between the vector is $ \pi $ , then $ \vec m.\vec n = - \left| {\vec m} \right|\left| {\vec n} \right| $
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\], where $ \vec a $ and $ \vec b $ are two vectors.
Complete step-by-step answer:
The figure below shows a cube of side length 1, in which OQ and OP are its diagonals. O is the origin of the cube.
From the above figure,
The coordinates of point $ P(1,1,1) $
The coordinates of point $ Q(1,1,0) $
Vector OP is given by,
$ \mathop {OP}\limits^ \to = \hat i + \hat j + \hat k $
The modulus of the vector r is given by,
$ \Rightarrow \vec r = a\hat i + b\hat j + c\hat k $ is $ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of $ \left| {\mathop {OP}\limits^ \to } \right| $ is given by,
$
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt {{1^2} + {1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt 3 \\
$
Vector OQ is given by,
\[\mathop {OQ}\limits^ \to = \hat i + \hat j\]
The modulus of vector OQ is given by,
$
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt {{1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt 2 \\
$
The angle between $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ is given by,
\[\Rightarrow \cos \theta = \dfrac{{\mathop {OP}\limits^ \to .\mathop {OQ}\limits^ \to }}{{\left| {\mathop {OP}\limits^ \to } \right|\left| {\mathop {OQ}\limits^ \to } \right|}} \cdots \left( 1 \right)\]
Substitute the value of $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ in equation (1)
The dot product of same unit vector is $ \hat i.\hat i = 1 $ and that of different unit vector is $ \hat i.\hat j = 0 $
$
\Rightarrow \cos \theta = \dfrac{{1 + 1 + 0}}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{2}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
\theta = {\cos ^{ - 1}}\left( {0.8165} \right) \\
\Rightarrow \theta = {35.26^o} \\
$
Hence, the angle between any two diagonals of a cube is $ {35.26^o} $
Note: The important point that is to be noted are,
The value of vector AB if vector A and vector B are given, is calculated as
$ \left| {\mathop {AB}\limits^ \to } \right| = \mathop B\limits^ \to - \mathop A\limits^ \to $
The modulus of the vector $ \vec r = a\hat i + b\hat j + c\hat k $ is calculated by taking the square root of the sum of the square of the coefficients and is given by the formula
$ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of the vectors tells about the magnitude of the vector.
The angle between the two vectors $ \vec m $ and $ \vec n $ is given by the formula
\[\cos \theta = \dfrac{{\vec m.\vec n}}{{\left| {\vec m} \right|\left| {\vec n} \right|}}\]
If the angle between the vectors is $ \dfrac{\pi }{2} $ , then $ \vec m.\vec n = 0 $
If the angle between the vector is $ 0 $ , then $ \vec m.\vec n = \left| {\vec m} \right|\left| {\vec n} \right| $ , and
If the angle between the vector is $ \pi $ , then $ \vec m.\vec n = - \left| {\vec m} \right|\left| {\vec n} \right| $
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

