
How do you find the amplitude, period and graph $y = \sec \left( {3\theta } \right)$?
Answer
541.2k+ views
Hint: First find amplitude, period, phase shift, and vertical shift for given periodic function. Select a few points to graph. Find the points at $\theta = 0$, $\theta = \dfrac{\pi }{{18}}$, $\theta = \dfrac{\pi }{9}$, $\theta = \dfrac{\pi }{3}$, $\theta = \dfrac{{2\pi }}{3}$. List the points in a table. Then graph the trigonometric function using the amplitude, period, phase shift, vertical shift and the points.
Formula used:
For the graph of $y = a\sec \left( {bx - c} \right) + d$
Amplitude: None
Period$ = \dfrac{{2\pi }}{{\left| b \right|}}$
Phase Shift $ = \dfrac{c}{b}$
Vertical Shift $ = d$
Complete step by step answer:
We will use the form $y = a\sec \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \sec \left( {3\theta } \right)$ with $y = a\sec \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 3$, $c = 0$ and $d = 0$.
Since the graph of the function $\sec $ does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Now, find the period using the formula $\dfrac{{2\pi }}{{\left| b \right|}}$.
So, we will calculate the period of the function using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $3$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 3 \right|}}$
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between $0$ and $3$ is $3$.
Period: $\dfrac{{2\pi }}{3}$
Divide $2\pi $ by $3$.
Period: $\dfrac{{2\pi }}{3}$
Now, we will find the phase shift using the formula $\dfrac{c}{b}$.
So, we will calculate the phase shift of the function from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Here, replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{3}$
Divide $0$ by $3$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
List the properties of the trigonometric function.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Select a few points to graph.
Find the point at $\theta = 0$.
Replace the variable $\theta $ with $0$ in the expression.
$f\left( 0 \right) = \sec \left( {3 \times 0} \right)$
Simplify the result.
The exact value of $\sec \left( 0 \right)$ is $1$.
$f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $\theta = \dfrac{\pi }{{18}}$.
Replace the variable $\theta $ with $\dfrac{\pi }{{18}}$ in the expression.
$f\left( {\dfrac{\pi }{{18}}} \right) = \sec \left( {3 \times \dfrac{\pi }{{18}}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{6}} \right)$ is $\dfrac{2}{{\sqrt 3 }}$.
$f\left( {\dfrac{\pi }{{18}}} \right) = \dfrac{2}{{\sqrt 3 }}$
The final answer is $\dfrac{2}{{\sqrt 3 }}$.
Find the point at $\theta = \dfrac{\pi }{9}$.
Replace the variable $\theta $ with $\dfrac{\pi }{9}$ in the expression.
$f\left( {\dfrac{\pi }{9}} \right) = \sec \left( {3 \times \dfrac{\pi }{9}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{3}} \right)$ is $2$.
$f\left( {\dfrac{\pi }{9}} \right) = 2$
The final answer is $2$.
Find the point at $\theta = \dfrac{\pi }{3}$.
Replace the variable $\theta $ with $\dfrac{\pi }{3}$ in the expression.
$f\left( {\dfrac{\pi }{3}} \right) = \sec \left( {3 \times \dfrac{\pi }{3}} \right)$
Simplify the result.
The exact value of $\sec \left( \pi \right)$ is $ - 1$.
$f\left( {\dfrac{\pi }{3}} \right) = - 1$
The final answer is $ - 1$.
Find the point at $\theta = \dfrac{{2\pi }}{3}$.
Replace the variable $\theta $ with $\dfrac{{2\pi }}{3}$ in the expression.
$f\left( {\dfrac{{2\pi }}{3}} \right) = \sec \left( {3 \times \dfrac{{2\pi }}{3}} \right)$
Simplify the result.
The exact value of $\sec \left( {2\pi } \right)$ is $1$.
$f\left( {\dfrac{{2\pi }}{3}} \right) = 1$
The final answer is $1$.
List the points in a table.
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Note: $\sec 3\theta $ and $3\sec \theta $ are entirely different terms.
$3\sec \theta $ is thrice the secant of angle $\theta $. It lies between $ - 2$ and $2$.
$\sec 3\theta $ is the cosine of angle $3\theta $. It is three times the angle $\theta $. The value of $\sec 3\theta $ is between $ - 1$ and $1$.
Formula used:
For the graph of $y = a\sec \left( {bx - c} \right) + d$
Amplitude: None
Period$ = \dfrac{{2\pi }}{{\left| b \right|}}$
Phase Shift $ = \dfrac{c}{b}$
Vertical Shift $ = d$
Complete step by step answer:
We will use the form $y = a\sec \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \sec \left( {3\theta } \right)$ with $y = a\sec \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 3$, $c = 0$ and $d = 0$.
Since the graph of the function $\sec $ does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Now, find the period using the formula $\dfrac{{2\pi }}{{\left| b \right|}}$.
So, we will calculate the period of the function using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $3$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 3 \right|}}$
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between $0$ and $3$ is $3$.
Period: $\dfrac{{2\pi }}{3}$
Divide $2\pi $ by $3$.
Period: $\dfrac{{2\pi }}{3}$
Now, we will find the phase shift using the formula $\dfrac{c}{b}$.
So, we will calculate the phase shift of the function from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Here, replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{3}$
Divide $0$ by $3$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
List the properties of the trigonometric function.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Select a few points to graph.
Find the point at $\theta = 0$.
Replace the variable $\theta $ with $0$ in the expression.
$f\left( 0 \right) = \sec \left( {3 \times 0} \right)$
Simplify the result.
The exact value of $\sec \left( 0 \right)$ is $1$.
$f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $\theta = \dfrac{\pi }{{18}}$.
Replace the variable $\theta $ with $\dfrac{\pi }{{18}}$ in the expression.
$f\left( {\dfrac{\pi }{{18}}} \right) = \sec \left( {3 \times \dfrac{\pi }{{18}}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{6}} \right)$ is $\dfrac{2}{{\sqrt 3 }}$.
$f\left( {\dfrac{\pi }{{18}}} \right) = \dfrac{2}{{\sqrt 3 }}$
The final answer is $\dfrac{2}{{\sqrt 3 }}$.
Find the point at $\theta = \dfrac{\pi }{9}$.
Replace the variable $\theta $ with $\dfrac{\pi }{9}$ in the expression.
$f\left( {\dfrac{\pi }{9}} \right) = \sec \left( {3 \times \dfrac{\pi }{9}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{3}} \right)$ is $2$.
$f\left( {\dfrac{\pi }{9}} \right) = 2$
The final answer is $2$.
Find the point at $\theta = \dfrac{\pi }{3}$.
Replace the variable $\theta $ with $\dfrac{\pi }{3}$ in the expression.
$f\left( {\dfrac{\pi }{3}} \right) = \sec \left( {3 \times \dfrac{\pi }{3}} \right)$
Simplify the result.
The exact value of $\sec \left( \pi \right)$ is $ - 1$.
$f\left( {\dfrac{\pi }{3}} \right) = - 1$
The final answer is $ - 1$.
Find the point at $\theta = \dfrac{{2\pi }}{3}$.
Replace the variable $\theta $ with $\dfrac{{2\pi }}{3}$ in the expression.
$f\left( {\dfrac{{2\pi }}{3}} \right) = \sec \left( {3 \times \dfrac{{2\pi }}{3}} \right)$
Simplify the result.
The exact value of $\sec \left( {2\pi } \right)$ is $1$.
$f\left( {\dfrac{{2\pi }}{3}} \right) = 1$
The final answer is $1$.
List the points in a table.
| $x$ | $f\left( x \right)$ |
| $0$ | $1$ |
| $\dfrac{\pi }{{18}}$ | $\dfrac{2}{{\sqrt 3 }}$ |
| $\dfrac{\pi }{9}$ | $ - 1$ |
| $\dfrac{\pi }{3}$ | $ - \dfrac{1}{2}$ |
| $\dfrac{{2\pi }}{3}$ | $1$ |
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
| $x$ | $f\left( x \right)$ |
| $0$ | $1$ |
| $\dfrac{\pi }{{18}}$ | $\dfrac{2}{{\sqrt 3 }}$ |
| $\dfrac{\pi }{9}$ | $ - 1$ |
| $\dfrac{\pi }{3}$ | $ - \dfrac{1}{2}$ |
| $\dfrac{{2\pi }}{3}$ | $1$ |
Note: $\sec 3\theta $ and $3\sec \theta $ are entirely different terms.
$3\sec \theta $ is thrice the secant of angle $\theta $. It lies between $ - 2$ and $2$.
$\sec 3\theta $ is the cosine of angle $3\theta $. It is three times the angle $\theta $. The value of $\sec 3\theta $ is between $ - 1$ and $1$.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

