
How do you find the amplitude, period and graph $y = \sec \left( {3\theta } \right)$?
Answer
451.8k+ views
Hint: First find amplitude, period, phase shift, and vertical shift for given periodic function. Select a few points to graph. Find the points at $\theta = 0$, $\theta = \dfrac{\pi }{{18}}$, $\theta = \dfrac{\pi }{9}$, $\theta = \dfrac{\pi }{3}$, $\theta = \dfrac{{2\pi }}{3}$. List the points in a table. Then graph the trigonometric function using the amplitude, period, phase shift, vertical shift and the points.
Formula used:
For the graph of $y = a\sec \left( {bx - c} \right) + d$
Amplitude: None
Period$ = \dfrac{{2\pi }}{{\left| b \right|}}$
Phase Shift $ = \dfrac{c}{b}$
Vertical Shift $ = d$
Complete step by step answer:
We will use the form $y = a\sec \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \sec \left( {3\theta } \right)$ with $y = a\sec \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 3$, $c = 0$ and $d = 0$.
Since the graph of the function $\sec $ does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Now, find the period using the formula $\dfrac{{2\pi }}{{\left| b \right|}}$.
So, we will calculate the period of the function using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $3$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 3 \right|}}$
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between $0$ and $3$ is $3$.
Period: $\dfrac{{2\pi }}{3}$
Divide $2\pi $ by $3$.
Period: $\dfrac{{2\pi }}{3}$
Now, we will find the phase shift using the formula $\dfrac{c}{b}$.
So, we will calculate the phase shift of the function from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Here, replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{3}$
Divide $0$ by $3$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
List the properties of the trigonometric function.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Select a few points to graph.
Find the point at $\theta = 0$.
Replace the variable $\theta $ with $0$ in the expression.
$f\left( 0 \right) = \sec \left( {3 \times 0} \right)$
Simplify the result.
The exact value of $\sec \left( 0 \right)$ is $1$.
$f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $\theta = \dfrac{\pi }{{18}}$.
Replace the variable $\theta $ with $\dfrac{\pi }{{18}}$ in the expression.
$f\left( {\dfrac{\pi }{{18}}} \right) = \sec \left( {3 \times \dfrac{\pi }{{18}}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{6}} \right)$ is $\dfrac{2}{{\sqrt 3 }}$.
$f\left( {\dfrac{\pi }{{18}}} \right) = \dfrac{2}{{\sqrt 3 }}$
The final answer is $\dfrac{2}{{\sqrt 3 }}$.
Find the point at $\theta = \dfrac{\pi }{9}$.
Replace the variable $\theta $ with $\dfrac{\pi }{9}$ in the expression.
$f\left( {\dfrac{\pi }{9}} \right) = \sec \left( {3 \times \dfrac{\pi }{9}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{3}} \right)$ is $2$.
$f\left( {\dfrac{\pi }{9}} \right) = 2$
The final answer is $2$.
Find the point at $\theta = \dfrac{\pi }{3}$.
Replace the variable $\theta $ with $\dfrac{\pi }{3}$ in the expression.
$f\left( {\dfrac{\pi }{3}} \right) = \sec \left( {3 \times \dfrac{\pi }{3}} \right)$
Simplify the result.
The exact value of $\sec \left( \pi \right)$ is $ - 1$.
$f\left( {\dfrac{\pi }{3}} \right) = - 1$
The final answer is $ - 1$.
Find the point at $\theta = \dfrac{{2\pi }}{3}$.
Replace the variable $\theta $ with $\dfrac{{2\pi }}{3}$ in the expression.
$f\left( {\dfrac{{2\pi }}{3}} \right) = \sec \left( {3 \times \dfrac{{2\pi }}{3}} \right)$
Simplify the result.
The exact value of $\sec \left( {2\pi } \right)$ is $1$.
$f\left( {\dfrac{{2\pi }}{3}} \right) = 1$
The final answer is $1$.
List the points in a table.
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Note: $\sec 3\theta $ and $3\sec \theta $ are entirely different terms.
$3\sec \theta $ is thrice the secant of angle $\theta $. It lies between $ - 2$ and $2$.
$\sec 3\theta $ is the cosine of angle $3\theta $. It is three times the angle $\theta $. The value of $\sec 3\theta $ is between $ - 1$ and $1$.
Formula used:
For the graph of $y = a\sec \left( {bx - c} \right) + d$
Amplitude: None
Period$ = \dfrac{{2\pi }}{{\left| b \right|}}$
Phase Shift $ = \dfrac{c}{b}$
Vertical Shift $ = d$
Complete step by step answer:
We will use the form $y = a\sec \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \sec \left( {3\theta } \right)$ with $y = a\sec \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 3$, $c = 0$ and $d = 0$.
Since the graph of the function $\sec $ does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Now, find the period using the formula $\dfrac{{2\pi }}{{\left| b \right|}}$.
So, we will calculate the period of the function using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $3$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 3 \right|}}$
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between $0$ and $3$ is $3$.
Period: $\dfrac{{2\pi }}{3}$
Divide $2\pi $ by $3$.
Period: $\dfrac{{2\pi }}{3}$
Now, we will find the phase shift using the formula $\dfrac{c}{b}$.
So, we will calculate the phase shift of the function from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Here, replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{3}$
Divide $0$ by $3$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
List the properties of the trigonometric function.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Select a few points to graph.
Find the point at $\theta = 0$.
Replace the variable $\theta $ with $0$ in the expression.
$f\left( 0 \right) = \sec \left( {3 \times 0} \right)$
Simplify the result.
The exact value of $\sec \left( 0 \right)$ is $1$.
$f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $\theta = \dfrac{\pi }{{18}}$.
Replace the variable $\theta $ with $\dfrac{\pi }{{18}}$ in the expression.
$f\left( {\dfrac{\pi }{{18}}} \right) = \sec \left( {3 \times \dfrac{\pi }{{18}}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{6}} \right)$ is $\dfrac{2}{{\sqrt 3 }}$.
$f\left( {\dfrac{\pi }{{18}}} \right) = \dfrac{2}{{\sqrt 3 }}$
The final answer is $\dfrac{2}{{\sqrt 3 }}$.
Find the point at $\theta = \dfrac{\pi }{9}$.
Replace the variable $\theta $ with $\dfrac{\pi }{9}$ in the expression.
$f\left( {\dfrac{\pi }{9}} \right) = \sec \left( {3 \times \dfrac{\pi }{9}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{3}} \right)$ is $2$.
$f\left( {\dfrac{\pi }{9}} \right) = 2$
The final answer is $2$.
Find the point at $\theta = \dfrac{\pi }{3}$.
Replace the variable $\theta $ with $\dfrac{\pi }{3}$ in the expression.
$f\left( {\dfrac{\pi }{3}} \right) = \sec \left( {3 \times \dfrac{\pi }{3}} \right)$
Simplify the result.
The exact value of $\sec \left( \pi \right)$ is $ - 1$.
$f\left( {\dfrac{\pi }{3}} \right) = - 1$
The final answer is $ - 1$.
Find the point at $\theta = \dfrac{{2\pi }}{3}$.
Replace the variable $\theta $ with $\dfrac{{2\pi }}{3}$ in the expression.
$f\left( {\dfrac{{2\pi }}{3}} \right) = \sec \left( {3 \times \dfrac{{2\pi }}{3}} \right)$
Simplify the result.
The exact value of $\sec \left( {2\pi } \right)$ is $1$.
$f\left( {\dfrac{{2\pi }}{3}} \right) = 1$
The final answer is $1$.
List the points in a table.
$x$ | $f\left( x \right)$ |
$0$ | $1$ |
$\dfrac{\pi }{{18}}$ | $\dfrac{2}{{\sqrt 3 }}$ |
$\dfrac{\pi }{9}$ | $ - 1$ |
$\dfrac{\pi }{3}$ | $ - \dfrac{1}{2}$ |
$\dfrac{{2\pi }}{3}$ | $1$ |
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
$x$ | $f\left( x \right)$ |
$0$ | $1$ |
$\dfrac{\pi }{{18}}$ | $\dfrac{2}{{\sqrt 3 }}$ |
$\dfrac{\pi }{9}$ | $ - 1$ |
$\dfrac{\pi }{3}$ | $ - \dfrac{1}{2}$ |
$\dfrac{{2\pi }}{3}$ | $1$ |

Note: $\sec 3\theta $ and $3\sec \theta $ are entirely different terms.
$3\sec \theta $ is thrice the secant of angle $\theta $. It lies between $ - 2$ and $2$.
$\sec 3\theta $ is the cosine of angle $3\theta $. It is three times the angle $\theta $. The value of $\sec 3\theta $ is between $ - 1$ and $1$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
