
How do you find the amplitude, period and graph $y = \sec \left( {3\theta } \right)$?
Answer
533.7k+ views
Hint: First find amplitude, period, phase shift, and vertical shift for given periodic function. Select a few points to graph. Find the points at $\theta = 0$, $\theta = \dfrac{\pi }{{18}}$, $\theta = \dfrac{\pi }{9}$, $\theta = \dfrac{\pi }{3}$, $\theta = \dfrac{{2\pi }}{3}$. List the points in a table. Then graph the trigonometric function using the amplitude, period, phase shift, vertical shift and the points.
Formula used:
For the graph of $y = a\sec \left( {bx - c} \right) + d$
Amplitude: None
Period$ = \dfrac{{2\pi }}{{\left| b \right|}}$
Phase Shift $ = \dfrac{c}{b}$
Vertical Shift $ = d$
Complete step by step answer:
We will use the form $y = a\sec \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \sec \left( {3\theta } \right)$ with $y = a\sec \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 3$, $c = 0$ and $d = 0$.
Since the graph of the function $\sec $ does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Now, find the period using the formula $\dfrac{{2\pi }}{{\left| b \right|}}$.
So, we will calculate the period of the function using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $3$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 3 \right|}}$
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between $0$ and $3$ is $3$.
Period: $\dfrac{{2\pi }}{3}$
Divide $2\pi $ by $3$.
Period: $\dfrac{{2\pi }}{3}$
Now, we will find the phase shift using the formula $\dfrac{c}{b}$.
So, we will calculate the phase shift of the function from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Here, replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{3}$
Divide $0$ by $3$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
List the properties of the trigonometric function.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Select a few points to graph.
Find the point at $\theta = 0$.
Replace the variable $\theta $ with $0$ in the expression.
$f\left( 0 \right) = \sec \left( {3 \times 0} \right)$
Simplify the result.
The exact value of $\sec \left( 0 \right)$ is $1$.
$f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $\theta = \dfrac{\pi }{{18}}$.
Replace the variable $\theta $ with $\dfrac{\pi }{{18}}$ in the expression.
$f\left( {\dfrac{\pi }{{18}}} \right) = \sec \left( {3 \times \dfrac{\pi }{{18}}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{6}} \right)$ is $\dfrac{2}{{\sqrt 3 }}$.
$f\left( {\dfrac{\pi }{{18}}} \right) = \dfrac{2}{{\sqrt 3 }}$
The final answer is $\dfrac{2}{{\sqrt 3 }}$.
Find the point at $\theta = \dfrac{\pi }{9}$.
Replace the variable $\theta $ with $\dfrac{\pi }{9}$ in the expression.
$f\left( {\dfrac{\pi }{9}} \right) = \sec \left( {3 \times \dfrac{\pi }{9}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{3}} \right)$ is $2$.
$f\left( {\dfrac{\pi }{9}} \right) = 2$
The final answer is $2$.
Find the point at $\theta = \dfrac{\pi }{3}$.
Replace the variable $\theta $ with $\dfrac{\pi }{3}$ in the expression.
$f\left( {\dfrac{\pi }{3}} \right) = \sec \left( {3 \times \dfrac{\pi }{3}} \right)$
Simplify the result.
The exact value of $\sec \left( \pi \right)$ is $ - 1$.
$f\left( {\dfrac{\pi }{3}} \right) = - 1$
The final answer is $ - 1$.
Find the point at $\theta = \dfrac{{2\pi }}{3}$.
Replace the variable $\theta $ with $\dfrac{{2\pi }}{3}$ in the expression.
$f\left( {\dfrac{{2\pi }}{3}} \right) = \sec \left( {3 \times \dfrac{{2\pi }}{3}} \right)$
Simplify the result.
The exact value of $\sec \left( {2\pi } \right)$ is $1$.
$f\left( {\dfrac{{2\pi }}{3}} \right) = 1$
The final answer is $1$.
List the points in a table.
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Note: $\sec 3\theta $ and $3\sec \theta $ are entirely different terms.
$3\sec \theta $ is thrice the secant of angle $\theta $. It lies between $ - 2$ and $2$.
$\sec 3\theta $ is the cosine of angle $3\theta $. It is three times the angle $\theta $. The value of $\sec 3\theta $ is between $ - 1$ and $1$.
Formula used:
For the graph of $y = a\sec \left( {bx - c} \right) + d$
Amplitude: None
Period$ = \dfrac{{2\pi }}{{\left| b \right|}}$
Phase Shift $ = \dfrac{c}{b}$
Vertical Shift $ = d$
Complete step by step answer:
We will use the form $y = a\sec \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \sec \left( {3\theta } \right)$ with $y = a\sec \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 3$, $c = 0$ and $d = 0$.
Since the graph of the function $\sec $ does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Now, find the period using the formula $\dfrac{{2\pi }}{{\left| b \right|}}$.
So, we will calculate the period of the function using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $3$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 3 \right|}}$
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between $0$ and $3$ is $3$.
Period: $\dfrac{{2\pi }}{3}$
Divide $2\pi $ by $3$.
Period: $\dfrac{{2\pi }}{3}$
Now, we will find the phase shift using the formula $\dfrac{c}{b}$.
So, we will calculate the phase shift of the function from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Here, replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{3}$
Divide $0$ by $3$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
List the properties of the trigonometric function.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Select a few points to graph.
Find the point at $\theta = 0$.
Replace the variable $\theta $ with $0$ in the expression.
$f\left( 0 \right) = \sec \left( {3 \times 0} \right)$
Simplify the result.
The exact value of $\sec \left( 0 \right)$ is $1$.
$f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $\theta = \dfrac{\pi }{{18}}$.
Replace the variable $\theta $ with $\dfrac{\pi }{{18}}$ in the expression.
$f\left( {\dfrac{\pi }{{18}}} \right) = \sec \left( {3 \times \dfrac{\pi }{{18}}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{6}} \right)$ is $\dfrac{2}{{\sqrt 3 }}$.
$f\left( {\dfrac{\pi }{{18}}} \right) = \dfrac{2}{{\sqrt 3 }}$
The final answer is $\dfrac{2}{{\sqrt 3 }}$.
Find the point at $\theta = \dfrac{\pi }{9}$.
Replace the variable $\theta $ with $\dfrac{\pi }{9}$ in the expression.
$f\left( {\dfrac{\pi }{9}} \right) = \sec \left( {3 \times \dfrac{\pi }{9}} \right)$
Simplify the result.
The exact value of $\sec \left( {\dfrac{\pi }{3}} \right)$ is $2$.
$f\left( {\dfrac{\pi }{9}} \right) = 2$
The final answer is $2$.
Find the point at $\theta = \dfrac{\pi }{3}$.
Replace the variable $\theta $ with $\dfrac{\pi }{3}$ in the expression.
$f\left( {\dfrac{\pi }{3}} \right) = \sec \left( {3 \times \dfrac{\pi }{3}} \right)$
Simplify the result.
The exact value of $\sec \left( \pi \right)$ is $ - 1$.
$f\left( {\dfrac{\pi }{3}} \right) = - 1$
The final answer is $ - 1$.
Find the point at $\theta = \dfrac{{2\pi }}{3}$.
Replace the variable $\theta $ with $\dfrac{{2\pi }}{3}$ in the expression.
$f\left( {\dfrac{{2\pi }}{3}} \right) = \sec \left( {3 \times \dfrac{{2\pi }}{3}} \right)$
Simplify the result.
The exact value of $\sec \left( {2\pi } \right)$ is $1$.
$f\left( {\dfrac{{2\pi }}{3}} \right) = 1$
The final answer is $1$.
List the points in a table.
| $x$ | $f\left( x \right)$ |
| $0$ | $1$ |
| $\dfrac{\pi }{{18}}$ | $\dfrac{2}{{\sqrt 3 }}$ |
| $\dfrac{\pi }{9}$ | $ - 1$ |
| $\dfrac{\pi }{3}$ | $ - \dfrac{1}{2}$ |
| $\dfrac{{2\pi }}{3}$ | $1$ |
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: None
Period: $\dfrac{{2\pi }}{3}$
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
| $x$ | $f\left( x \right)$ |
| $0$ | $1$ |
| $\dfrac{\pi }{{18}}$ | $\dfrac{2}{{\sqrt 3 }}$ |
| $\dfrac{\pi }{9}$ | $ - 1$ |
| $\dfrac{\pi }{3}$ | $ - \dfrac{1}{2}$ |
| $\dfrac{{2\pi }}{3}$ | $1$ |
Note: $\sec 3\theta $ and $3\sec \theta $ are entirely different terms.
$3\sec \theta $ is thrice the secant of angle $\theta $. It lies between $ - 2$ and $2$.
$\sec 3\theta $ is the cosine of angle $3\theta $. It is three times the angle $\theta $. The value of $\sec 3\theta $ is between $ - 1$ and $1$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

