Answer
Verified
444.6k+ views
Hint: Here we will use the formula to find the amount A is $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$ where A is the amount, P is principal, R is the rate of interest and n is the time period. Here we will take $n = 3$ for the amount after one and half year, since the rate of interest is compounded half yearly. Also, in the second case where the interest is calculated annually, use both the formulas for the compound interest and simple interest $I = \dfrac{{PRT}}{{100}}$ .
Complete step-by-step answer:
Given that-
Principal, $P = \,{\text{Rs 1}}0,000$
Rate of interest, $R = 10\% $ per annum
$ \Rightarrow R = 5\% {\text{ }}\;per\,{\text{6 months}}$
Case (i) Interest is compounded half-yearly
Here, the interest is calculated half-yearly, $\therefore n = 18\;{\text{months = 3}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 10000 \times {\left( {1 + \dfrac{5}{{100}}} \right)^3}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 10000 \times {\left( {\dfrac{{100 + 5}}{{100}}} \right)^3} \\
\Rightarrow A = 10000 \times {\left( {\dfrac{{105}}{{100}}} \right)^3} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 10000 \times {(10.5)^3}$
Simplify the above equation-
$ \Rightarrow A = 11,576.25{\text{ Rs}}{\text{.}}$
Now, the compound Interest $ = Amount{\text{ - Principal (Sum)}}$
Place the values
$
C.I. = 11576.25 - 10000 \\
C.I. = Rs.{\text{ 1576}}{\text{.25}}\,{\text{ }}.....{\text{ (A)}} \\
$
Case (ii) Interest is compounded annually-
Rate of interest, $R = 10\% $ per annum
Term period, $T = 1\dfrac{1}{2}years,{\text{ }} \Rightarrow {\text{n = 1}}$
Amount, $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
Place values in the above equation –
$ \Rightarrow A = 10000{\left( {1 + \dfrac{{10}}{{100}}} \right)^1}$
Simplify the above equation –
$ \Rightarrow A = 10000{\left( {1 + \dfrac{1}{{10}}} \right)^1}$
Take LCM (Least common multiple) and simplify
$ \Rightarrow A = 10000{\left( {\dfrac{{11}}{{10}}} \right)^1}$
Convert the fraction in the decimal form –
$ \Rightarrow A = 10000{\left( {1.1} \right)^1}$
Simplify the above equation –
$ \Rightarrow A = 11000\;{\text{ }}.....{\text{ (B)}}$
Now, Simple interest for last half year is –
$I = \dfrac{{PRT}}{{100}}$
Place values in the above equation, where $T = \dfrac{1}{2}year$ and $P = 11000\;{\text{Rs}}{\text{.}}$
$I = \dfrac{{11000 \times 10 \times \dfrac{1}{2}}}{{100}}$
Numerator’s denominator goes to denominator-
$I = \dfrac{{11000 \times 10 \times 1}}{{100 \times 2}}$
Simplify the above equation –
$ \Rightarrow I = 550{\text{ Rs}}{\text{.}}\;{\text{ }}....{\text{ (C)}}$
By using equations (B) and (C)-
The Net amount after \[1\dfrac{1}{2}{\text{year is}}\]
$
{A_N} = 11000 + 550 \\
{A_N} = 11550{\text{ Rs}}{\text{.}} \\
$
Now, the compound Interest $ = Amoun{t_{Net}}{\text{ - Principal (Sum)}}$
Place the values
$
C.I. = 11550 - 10000 \\
C.I. = Rs.{\text{ 1550}}{\text{ }}....{\text{ (D)}} \\
$
By comparing the equations (A) and (D), we can say that interest would be more in case it is compounded half yearly.
Note: Interest is the amount of money paid for using someone else’s money. There are two types of interest. $1)$ Simple Interest and $2)$ Compound interest. Know the difference between both the types of interest and apply them accordingly.
Complete step-by-step answer:
Given that-
Principal, $P = \,{\text{Rs 1}}0,000$
Rate of interest, $R = 10\% $ per annum
$ \Rightarrow R = 5\% {\text{ }}\;per\,{\text{6 months}}$
Case (i) Interest is compounded half-yearly
Here, the interest is calculated half-yearly, $\therefore n = 18\;{\text{months = 3}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 10000 \times {\left( {1 + \dfrac{5}{{100}}} \right)^3}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 10000 \times {\left( {\dfrac{{100 + 5}}{{100}}} \right)^3} \\
\Rightarrow A = 10000 \times {\left( {\dfrac{{105}}{{100}}} \right)^3} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 10000 \times {(10.5)^3}$
Simplify the above equation-
$ \Rightarrow A = 11,576.25{\text{ Rs}}{\text{.}}$
Now, the compound Interest $ = Amount{\text{ - Principal (Sum)}}$
Place the values
$
C.I. = 11576.25 - 10000 \\
C.I. = Rs.{\text{ 1576}}{\text{.25}}\,{\text{ }}.....{\text{ (A)}} \\
$
Case (ii) Interest is compounded annually-
Rate of interest, $R = 10\% $ per annum
Term period, $T = 1\dfrac{1}{2}years,{\text{ }} \Rightarrow {\text{n = 1}}$
Amount, $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
Place values in the above equation –
$ \Rightarrow A = 10000{\left( {1 + \dfrac{{10}}{{100}}} \right)^1}$
Simplify the above equation –
$ \Rightarrow A = 10000{\left( {1 + \dfrac{1}{{10}}} \right)^1}$
Take LCM (Least common multiple) and simplify
$ \Rightarrow A = 10000{\left( {\dfrac{{11}}{{10}}} \right)^1}$
Convert the fraction in the decimal form –
$ \Rightarrow A = 10000{\left( {1.1} \right)^1}$
Simplify the above equation –
$ \Rightarrow A = 11000\;{\text{ }}.....{\text{ (B)}}$
Now, Simple interest for last half year is –
$I = \dfrac{{PRT}}{{100}}$
Place values in the above equation, where $T = \dfrac{1}{2}year$ and $P = 11000\;{\text{Rs}}{\text{.}}$
$I = \dfrac{{11000 \times 10 \times \dfrac{1}{2}}}{{100}}$
Numerator’s denominator goes to denominator-
$I = \dfrac{{11000 \times 10 \times 1}}{{100 \times 2}}$
Simplify the above equation –
$ \Rightarrow I = 550{\text{ Rs}}{\text{.}}\;{\text{ }}....{\text{ (C)}}$
By using equations (B) and (C)-
The Net amount after \[1\dfrac{1}{2}{\text{year is}}\]
$
{A_N} = 11000 + 550 \\
{A_N} = 11550{\text{ Rs}}{\text{.}} \\
$
Now, the compound Interest $ = Amoun{t_{Net}}{\text{ - Principal (Sum)}}$
Place the values
$
C.I. = 11550 - 10000 \\
C.I. = Rs.{\text{ 1550}}{\text{ }}....{\text{ (D)}} \\
$
By comparing the equations (A) and (D), we can say that interest would be more in case it is compounded half yearly.
Note: Interest is the amount of money paid for using someone else’s money. There are two types of interest. $1)$ Simple Interest and $2)$ Compound interest. Know the difference between both the types of interest and apply them accordingly.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE