
How do you find the $6$ trigonometric functions for $\dfrac{{16\pi }}{3}$?
Answer
556.8k+ views
Hint: In order to find the trigonometric functions for the given angle, if the angle is not one of the standard values we remember from the trigonometric table, we split the angle into two standard angles whose tangent value we know, such that the sum or difference of two angles results in the given angle.
Complete step-by-step solution:
Here, we need to find the $6$ trigonometric functions, which are, $\sin $ , $\cos $ , $\tan $ , $\cot $ , $\sec $ and $\cos ec$ . Now we will find the all trigonometric functions for the given angle.
Let us take, $x = \dfrac{{16\pi }}{3}$
Now, firstly we find the value of $\sin $ function, we have
$\sin x = \sin \left( {\dfrac{{16\pi }}{3}} \right)$ , we write it as
$ = \sin \left( {\dfrac{{\pi + 15\pi }}{3}} \right)$
$ = \sin \left( {\dfrac{\pi }{3} + \dfrac{{15\pi }}{3}} \right)$ , now we simplify it and write it as
$ = \sin \left( {\dfrac{\pi }{3} + 5\pi } \right)$
$ = \sin \left( {\dfrac{\pi }{3} + \pi } \right)$ , because $\sin (2n + 1)\pi = \sin \pi $ , where $n$ is any integer, therefore we can take $5\pi $ as $\pi $
$ = \sin \left( {\pi + \dfrac{\pi }{3}} \right)$, as this angle of sine lies in third quadrant, then this expression becomes negative
$ = - \sin \dfrac{\pi }{3}$
The exact value of $\sin \dfrac{\pi }{3}$ is $\dfrac{{\sqrt 3 }}{2}$. Therefore, we get
$ = - \sin \dfrac{\pi }{3} = - \dfrac{{\sqrt 3 }}{2}$
∴ $\sin \dfrac{{16\pi }}{3} = - \dfrac{{\sqrt 3 }}{2}$ .
Similarly, we can find the other $5$ trigonometric functions. So, now we have
$\cos x = \cos \left( {\dfrac{{16\pi }}{3}} \right)$
$ = \cos \left( {\dfrac{{\pi + 15\pi }}{3}} \right)$ , we can also write it as
$ = \cos \left( {\dfrac{\pi }{3} + \dfrac{{15\pi }}{3}} \right)$
$ = \cos \left( {\dfrac{\pi }{3} + 5\pi } \right)$ , because $\cos (2n + 1)\pi = \cos \pi $ , where $n$ is any integer, therefore we can take $5\pi $ as $\pi $
$ = \cos \left( {\dfrac{\pi }{3} + \pi } \right)$ , again this angle is negative in third quadrant, then we have
$ = - \cos \dfrac{\pi }{3}$
Now, the exact value of $\cos \dfrac{\pi }{3}$ is $\dfrac{1}{2}$ . Therefore, we get
$ = - \cos \dfrac{\pi }{3} = - \dfrac{1}{2}$
∴ $\cos \dfrac{{16\pi }}{3} = - \dfrac{1}{2}$ .
Now, we need to find the value of $\tan x$ ,
We know that, $\tan x = \dfrac{{\sin x}}{{\cos x}}$
By substituting the values of $\sin x$ and $\cos x$ , we get
$ = \dfrac{{\dfrac{{ - \sqrt 3 }}{2}}}{{\dfrac{{ - 1}}{2}}}$
$ = \dfrac{{ - \sqrt 3 }}{2} \times \dfrac{{ - 2}}{1}$ , we do the reciprocal of the denominator, and after simplifying, we get
$ = \sqrt 3 $
∴ $\tan \dfrac{{16\pi }}{3} = \sqrt 3 $
Now, we know that $\cot x = \dfrac{1}{{\tan x}}$ , so we get
$ = \cot x = \dfrac{1}{{\sqrt 3 }}$
∴ $\cot \dfrac{{16\pi }}{3} = \dfrac{1}{{\sqrt 3 }}$ .
Similarly, we know that $\sec x = \dfrac{1}{{\cos x}}$ , so we get
$ = \sec x = \dfrac{1}{{\dfrac{{ - 1}}{2}}}$
$ \Rightarrow \sec x = - 2$ , so we get
∴ $\sec \dfrac{{16\pi }}{3} = - 2$ .
Now, we know that, $\cos ecx = \dfrac{1}{{\sin x}}$ , so we get
$\cos ecx = \dfrac{1}{{\dfrac{{ - \sqrt 3 }}{2}}}$
$ \Rightarrow \cos ecx = \dfrac{{ - 2}}{{\sqrt 3 }}$ so we get
∴ $\cos ec\dfrac{{16\pi }}{3} = \dfrac{{ - 2}}{{\sqrt 3 }}$ .
Hence, these are the required values of the $6$ trigonometric functions.
Note: The value of angle we evaluate here for all the trigonometric functions is in the radian measure. And, in order to find the exact value of all the trigonometric ratios we split the given angle in the two standard angles and then evaluated the values.
Complete step-by-step solution:
Here, we need to find the $6$ trigonometric functions, which are, $\sin $ , $\cos $ , $\tan $ , $\cot $ , $\sec $ and $\cos ec$ . Now we will find the all trigonometric functions for the given angle.
Let us take, $x = \dfrac{{16\pi }}{3}$
Now, firstly we find the value of $\sin $ function, we have
$\sin x = \sin \left( {\dfrac{{16\pi }}{3}} \right)$ , we write it as
$ = \sin \left( {\dfrac{{\pi + 15\pi }}{3}} \right)$
$ = \sin \left( {\dfrac{\pi }{3} + \dfrac{{15\pi }}{3}} \right)$ , now we simplify it and write it as
$ = \sin \left( {\dfrac{\pi }{3} + 5\pi } \right)$
$ = \sin \left( {\dfrac{\pi }{3} + \pi } \right)$ , because $\sin (2n + 1)\pi = \sin \pi $ , where $n$ is any integer, therefore we can take $5\pi $ as $\pi $
$ = \sin \left( {\pi + \dfrac{\pi }{3}} \right)$, as this angle of sine lies in third quadrant, then this expression becomes negative
$ = - \sin \dfrac{\pi }{3}$
The exact value of $\sin \dfrac{\pi }{3}$ is $\dfrac{{\sqrt 3 }}{2}$. Therefore, we get
$ = - \sin \dfrac{\pi }{3} = - \dfrac{{\sqrt 3 }}{2}$
∴ $\sin \dfrac{{16\pi }}{3} = - \dfrac{{\sqrt 3 }}{2}$ .
Similarly, we can find the other $5$ trigonometric functions. So, now we have
$\cos x = \cos \left( {\dfrac{{16\pi }}{3}} \right)$
$ = \cos \left( {\dfrac{{\pi + 15\pi }}{3}} \right)$ , we can also write it as
$ = \cos \left( {\dfrac{\pi }{3} + \dfrac{{15\pi }}{3}} \right)$
$ = \cos \left( {\dfrac{\pi }{3} + 5\pi } \right)$ , because $\cos (2n + 1)\pi = \cos \pi $ , where $n$ is any integer, therefore we can take $5\pi $ as $\pi $
$ = \cos \left( {\dfrac{\pi }{3} + \pi } \right)$ , again this angle is negative in third quadrant, then we have
$ = - \cos \dfrac{\pi }{3}$
Now, the exact value of $\cos \dfrac{\pi }{3}$ is $\dfrac{1}{2}$ . Therefore, we get
$ = - \cos \dfrac{\pi }{3} = - \dfrac{1}{2}$
∴ $\cos \dfrac{{16\pi }}{3} = - \dfrac{1}{2}$ .
Now, we need to find the value of $\tan x$ ,
We know that, $\tan x = \dfrac{{\sin x}}{{\cos x}}$
By substituting the values of $\sin x$ and $\cos x$ , we get
$ = \dfrac{{\dfrac{{ - \sqrt 3 }}{2}}}{{\dfrac{{ - 1}}{2}}}$
$ = \dfrac{{ - \sqrt 3 }}{2} \times \dfrac{{ - 2}}{1}$ , we do the reciprocal of the denominator, and after simplifying, we get
$ = \sqrt 3 $
∴ $\tan \dfrac{{16\pi }}{3} = \sqrt 3 $
Now, we know that $\cot x = \dfrac{1}{{\tan x}}$ , so we get
$ = \cot x = \dfrac{1}{{\sqrt 3 }}$
∴ $\cot \dfrac{{16\pi }}{3} = \dfrac{1}{{\sqrt 3 }}$ .
Similarly, we know that $\sec x = \dfrac{1}{{\cos x}}$ , so we get
$ = \sec x = \dfrac{1}{{\dfrac{{ - 1}}{2}}}$
$ \Rightarrow \sec x = - 2$ , so we get
∴ $\sec \dfrac{{16\pi }}{3} = - 2$ .
Now, we know that, $\cos ecx = \dfrac{1}{{\sin x}}$ , so we get
$\cos ecx = \dfrac{1}{{\dfrac{{ - \sqrt 3 }}{2}}}$
$ \Rightarrow \cos ecx = \dfrac{{ - 2}}{{\sqrt 3 }}$ so we get
∴ $\cos ec\dfrac{{16\pi }}{3} = \dfrac{{ - 2}}{{\sqrt 3 }}$ .
Hence, these are the required values of the $6$ trigonometric functions.
Note: The value of angle we evaluate here for all the trigonometric functions is in the radian measure. And, in order to find the exact value of all the trigonometric ratios we split the given angle in the two standard angles and then evaluated the values.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

