
Find the 13th term in the expansion of \[{\left( {9x - \dfrac{1}{{3\sqrt x }}} \right)^{18}},x \ne 0\]
Answer
590.4k+ views
Hint: Here we will use binomial term expansion and expand the given term to get its desired value.
The binomial expansion is given:-
\[
{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^0}{\left( b \right)^n} + {}^n{C_1}{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^n{C_2}{\left( a \right)^2}{\left( b \right)^{n - 2}} + ..................... + {}^n{C_n}{\left( a \right)^n}{\left( b \right)^0} \\
\\
\]
Complete step-by-step answer:
The given expansion is:
\[{\left( {9x - \dfrac{1}{{3\sqrt x }}} \right)^{18}}\]
Now since we know that the general expansion of \[{\left( {a + b} \right)^n}\] is given by:
\[{T_{r + 1}} = {}^n{C_r}{\left( a \right)^{n - r}}{\left( b \right)^r}\]
Now since we have to find the 13th term of the expression
Therefore,
\[
r = 12 \\
n = 18 \\
a = 9x \\
b = - \dfrac{1}{{3\sqrt x }} \\
\]
Putting in the values we get:
\[{T_{12 + 1}} = {}^{18}{C_{12}}{\left( {9x} \right)^{18 - 12}}{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^{12}}\]
Now since we can write
\[{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^{12}} = {\left( {\dfrac{{ - 1}}{3}} \right)^{12}}{\left[ {{{\left( {\dfrac{1}{x}} \right)}^{\dfrac{1}{2}}}} \right]^{12}}\]
Therefore putting in the values we get:-
\[{T_{13}} = {}^{18}{C_{12}}{\left( {9x} \right)^6}{\left( {\dfrac{{ - 1}}{3}} \right)^{12}}{\left[ {{{\left( {\dfrac{1}{x}} \right)}^{\dfrac{1}{2}}}} \right]^{12}}\]
On simplifying it we get:-
\[{T_{13}} = {}^{18}{C_{12}}{\left( {{3^2}} \right)^6}{\left( x \right)^6}{\left( {\dfrac{1}{3}} \right)^{12}}{\left( {\dfrac{1}{x}} \right)^6}\]
Cancelling the terms we get:-
\[{T_{13}} = {}^{18}{C_{12}}\]
Now we know that,
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Therefore,
\[{T_{13}} = \dfrac{{18!}}{{12! \times 6!}}\]
Now expanding the factorials we get:-
\[{T_{13}} = \dfrac{{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12!}}{{12! \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}\]
Cancelling the terms and solving it further we get:-
\[{T_{13}} = 17 \times 2 \times 3 \times 14 \times 13\]
Multiplying the terms we get:-
\[{T_{13}} = 18564\]
Hence 13th term is 18564
Note: The general expansion of \[{\left( {a + b} \right)^n}\] is given by:
\[{T_{r + 1}} = {}^n{C_r}{\left( a \right)^{n - r}}{\left( b \right)^r}\]In order to ease the calculation, one should use the above formula otherwise we can also solve this question by the following formula:
\[
{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^0}{\left( b \right)^n} + {}^n{C_1}{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^n{C_2}{\left( a \right)^2}{\left( b \right)^{n - 2}} + ..................... + {}^n{C_n}{\left( a \right)^n}{\left( b \right)^0} \\
\\
\]
The binomial expansion is given:-
\[
{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^0}{\left( b \right)^n} + {}^n{C_1}{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^n{C_2}{\left( a \right)^2}{\left( b \right)^{n - 2}} + ..................... + {}^n{C_n}{\left( a \right)^n}{\left( b \right)^0} \\
\\
\]
Complete step-by-step answer:
The given expansion is:
\[{\left( {9x - \dfrac{1}{{3\sqrt x }}} \right)^{18}}\]
Now since we know that the general expansion of \[{\left( {a + b} \right)^n}\] is given by:
\[{T_{r + 1}} = {}^n{C_r}{\left( a \right)^{n - r}}{\left( b \right)^r}\]
Now since we have to find the 13th term of the expression
Therefore,
\[
r = 12 \\
n = 18 \\
a = 9x \\
b = - \dfrac{1}{{3\sqrt x }} \\
\]
Putting in the values we get:
\[{T_{12 + 1}} = {}^{18}{C_{12}}{\left( {9x} \right)^{18 - 12}}{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^{12}}\]
Now since we can write
\[{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^{12}} = {\left( {\dfrac{{ - 1}}{3}} \right)^{12}}{\left[ {{{\left( {\dfrac{1}{x}} \right)}^{\dfrac{1}{2}}}} \right]^{12}}\]
Therefore putting in the values we get:-
\[{T_{13}} = {}^{18}{C_{12}}{\left( {9x} \right)^6}{\left( {\dfrac{{ - 1}}{3}} \right)^{12}}{\left[ {{{\left( {\dfrac{1}{x}} \right)}^{\dfrac{1}{2}}}} \right]^{12}}\]
On simplifying it we get:-
\[{T_{13}} = {}^{18}{C_{12}}{\left( {{3^2}} \right)^6}{\left( x \right)^6}{\left( {\dfrac{1}{3}} \right)^{12}}{\left( {\dfrac{1}{x}} \right)^6}\]
Cancelling the terms we get:-
\[{T_{13}} = {}^{18}{C_{12}}\]
Now we know that,
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Therefore,
\[{T_{13}} = \dfrac{{18!}}{{12! \times 6!}}\]
Now expanding the factorials we get:-
\[{T_{13}} = \dfrac{{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12!}}{{12! \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}\]
Cancelling the terms and solving it further we get:-
\[{T_{13}} = 17 \times 2 \times 3 \times 14 \times 13\]
Multiplying the terms we get:-
\[{T_{13}} = 18564\]
Hence 13th term is 18564
Note: The general expansion of \[{\left( {a + b} \right)^n}\] is given by:
\[{T_{r + 1}} = {}^n{C_r}{\left( a \right)^{n - r}}{\left( b \right)^r}\]In order to ease the calculation, one should use the above formula otherwise we can also solve this question by the following formula:
\[
{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^0}{\left( b \right)^n} + {}^n{C_1}{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^n{C_2}{\left( a \right)^2}{\left( b \right)^{n - 2}} + ..................... + {}^n{C_n}{\left( a \right)^n}{\left( b \right)^0} \\
\\
\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

