
Find out the quadrant of the point which divides internally the line segment joining (3, 4) and (7,-6) in two parts where one part is twice longer than the other.\[\]
(a)\[\text{I}\]
(b) \[\text{II}\]
(c) \[\text{III}\]
(d) \[\text{IV}\]
Answer
575.7k+ views
Hint: A point can divide the line segment either internally or externally. If the point is on the line segment then the point divides the line segment internally at any particular ratio. The line is going to cut the line segment only internally, we only need to take care of the internal case using the section formula.
Complete step-by-step solution:
We know from section formula that if any point $P(x,y)$ which divides a line segment internally $\overline{AB}$ in a ratio $AP:PB=m:n$ with endpoints $A({{x}_{1}},{{y}_{2}})\text{ and B(}{{\text{x}}_{2}}\text{,}{{\text{y}}_{2}}\text{)}$ then the coordinates of P are given by
\[\begin{align}
& x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} \\
& y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \\
\end{align}\]
Let us assume that the line divides the line segment internally at the point $P$. Here the coordinates of endpoints $A$ and $B$ are given as $\left( 3,4 \right)$ and (7,-6). According to the question, $P$ can divide the line segment $\overline{AB}$ such that one part is twice the other. We can see it raises two cases.
Case 1:
If the line divides in ratio $2:1$ or AP is twice PB, then $m:n=2:1$. Then the co-ordinates of P are
\[\begin{align}
& x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}=\dfrac{2(7)+1(3)}{2+1}=\dfrac{17}{3} \\
& y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}=\dfrac{2(-6)+1(4)}{2+1}=-\dfrac{8}{3} \\
\end{align}\]
As $x$ is positive and $y$ is negative, P lies in fourth(IV) quadrant. \[\]
Case 2:
If the line divides in ratio 1:2 or PB is twice AP , then $m:n=1:2$. Hence the co-ordinates of P are
\[\begin{align}
& x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}=\dfrac{1(7)+2(3)}{2+1}=\dfrac{13}{3} \\
& y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}=\dfrac{1(-6)+2(4)}{2+1}=\dfrac{2}{3} \\
\end{align}\]
As both $x\text{ and }y$ are positive, P lies in first (I) quadrant. The correct choices are A(I) and D(IV).
We can observe from the above image the two possible positions in two different quadrants of P in the $xy-$ plane.
Note: We need to be careful to choose sectional formula from the confusion of internal and external division of a line segment. As the question is ambiguous about the ratio of division, it makes two cases. It more than one option correct type of MCQ.
Complete step-by-step solution:
We know from section formula that if any point $P(x,y)$ which divides a line segment internally $\overline{AB}$ in a ratio $AP:PB=m:n$ with endpoints $A({{x}_{1}},{{y}_{2}})\text{ and B(}{{\text{x}}_{2}}\text{,}{{\text{y}}_{2}}\text{)}$ then the coordinates of P are given by
\[\begin{align}
& x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n} \\
& y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \\
\end{align}\]
Let us assume that the line divides the line segment internally at the point $P$. Here the coordinates of endpoints $A$ and $B$ are given as $\left( 3,4 \right)$ and (7,-6). According to the question, $P$ can divide the line segment $\overline{AB}$ such that one part is twice the other. We can see it raises two cases.
Case 1:
If the line divides in ratio $2:1$ or AP is twice PB, then $m:n=2:1$. Then the co-ordinates of P are
\[\begin{align}
& x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}=\dfrac{2(7)+1(3)}{2+1}=\dfrac{17}{3} \\
& y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}=\dfrac{2(-6)+1(4)}{2+1}=-\dfrac{8}{3} \\
\end{align}\]
As $x$ is positive and $y$ is negative, P lies in fourth(IV) quadrant. \[\]
Case 2:
If the line divides in ratio 1:2 or PB is twice AP , then $m:n=1:2$. Hence the co-ordinates of P are
\[\begin{align}
& x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}=\dfrac{1(7)+2(3)}{2+1}=\dfrac{13}{3} \\
& y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}=\dfrac{1(-6)+2(4)}{2+1}=\dfrac{2}{3} \\
\end{align}\]
As both $x\text{ and }y$ are positive, P lies in first (I) quadrant. The correct choices are A(I) and D(IV).
We can observe from the above image the two possible positions in two different quadrants of P in the $xy-$ plane.
Note: We need to be careful to choose sectional formula from the confusion of internal and external division of a line segment. As the question is ambiguous about the ratio of division, it makes two cases. It more than one option correct type of MCQ.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

