
Find matrix \[A\] such that\[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]A=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\].
Answer
495k+ views
Hint: In the question, the given matrix consists of three rows and 2 columns. Which we call the \[3\times 2\]matrix. Consider any \[2\times 2\] matrix as\[A\] and multiply \[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\] with matrix \[A\] and equate the corresponding terms with \[\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]. We have to know the multiplication of matrices.
Complete step by step answer:
From the question it is clear that we have to find the Find matrix \[A\] such that\[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]A=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\].
\[\Rightarrow \left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]A=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]……………………(1)
Now let us try to solve the matrix \[A\] by taking the\[2\times 2\] matrix as \[A\].
Let us consider matrix \[A={{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\]
Now put matrix \[A={{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\]in equation(1)
So equation(1) can be written as
\[\Rightarrow \left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]…………………(2)
Now applying multiplication of matrices on \[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\]and \[\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] we get
\[\Rightarrow \left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
2a-c & 2b-d \\
a & b \\
-3a+4c & -3b+4d \\
\end{matrix} \right]\]
Now put \[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\] in equation (2)
\[\Rightarrow \left[ \begin{matrix}
2a-c & 2b-d \\
a & b \\
-3a+4c & -3b+4d \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]
Now we got \[3\times 2\]matrices on both sides.
So, now we can equate the corresponding terms of LHS to RHS.
Now we will get
\[\begin{align}
& \Rightarrow 2a-c=-1 \\
& \Rightarrow a=1 \\
& \Rightarrow -3a+4c=9 \\
& \Rightarrow 2b-d=-8 \\
& \Rightarrow b=-2 \\
& \Rightarrow -3b+4d=22 \\
\end{align}\]
Now put \[a=1\]in \[2a-c=-1\] to get value of \[c\]
\[\Rightarrow 2a-c=-1\]
After simplification we get,
\[\begin{align}
& \Rightarrow c=2+1 \\
& \Rightarrow c=3 \\
\end{align}\]
So, we got \[c=3\].
Now put \[b=-2\] in \[2b-d=-8\].
Now We will get
\[\Rightarrow 2b-d=-8\]
On simplification we get,
\[\begin{align}
& \Rightarrow 2\left( -2 \right)-d=-8 \\
& \Rightarrow d=-4+8 \\
& \Rightarrow d=4 \\
\end{align}\]
So, we got \[d=4\]
Now, we know all the values of \[a,b,c,d\]
Now put \[a=1\], \[b=-2\], \[c=3\], \[d=4\] in \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\]
So now we will get
\[\Rightarrow A=\left[ \begin{matrix}
1 & -2 \\
3 & 4 \\
\end{matrix} \right]\]
From there we were asked to find the matrix \[A\]. As per the question we got\[A=\left[ \begin{matrix}
1 & -2 \\
3 & 4 \\
\end{matrix} \right]\].
Note: Students should be careful while doing matrix multiplication. During multiplication we have to multiply rows of the first matrix to the columns of the second matrix. Students should be accurate in calculations. Even small calculation mistakes can make large errors in the answer while finding the matrix \[A\].
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\] with matrix \[A\] and equate the corresponding terms with \[\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]. We have to know the multiplication of matrices.
Complete step by step answer:
From the question it is clear that we have to find the Find matrix \[A\] such that\[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]A=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\].
\[\Rightarrow \left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]A=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]……………………(1)
Now let us try to solve the matrix \[A\] by taking the\[2\times 2\] matrix as \[A\].
Let us consider matrix \[A={{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\]
Now put matrix \[A={{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\]in equation(1)
So equation(1) can be written as
\[\Rightarrow \left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]…………………(2)
Now applying multiplication of matrices on \[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\]and \[\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] we get
\[\Rightarrow \left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
2a-c & 2b-d \\
a & b \\
-3a+4c & -3b+4d \\
\end{matrix} \right]\]
Now put \[\left[ \begin{matrix}
2 & -1 \\
1 & 0 \\
-3 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\] in equation (2)
\[\Rightarrow \left[ \begin{matrix}
2a-c & 2b-d \\
a & b \\
-3a+4c & -3b+4d \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & -8 \\
1 & -2 \\
9 & 22 \\
\end{matrix} \right]\]
Now we got \[3\times 2\]matrices on both sides.
So, now we can equate the corresponding terms of LHS to RHS.
Now we will get
\[\begin{align}
& \Rightarrow 2a-c=-1 \\
& \Rightarrow a=1 \\
& \Rightarrow -3a+4c=9 \\
& \Rightarrow 2b-d=-8 \\
& \Rightarrow b=-2 \\
& \Rightarrow -3b+4d=22 \\
\end{align}\]
Now put \[a=1\]in \[2a-c=-1\] to get value of \[c\]
\[\Rightarrow 2a-c=-1\]
After simplification we get,
\[\begin{align}
& \Rightarrow c=2+1 \\
& \Rightarrow c=3 \\
\end{align}\]
So, we got \[c=3\].
Now put \[b=-2\] in \[2b-d=-8\].
Now We will get
\[\Rightarrow 2b-d=-8\]
On simplification we get,
\[\begin{align}
& \Rightarrow 2\left( -2 \right)-d=-8 \\
& \Rightarrow d=-4+8 \\
& \Rightarrow d=4 \\
\end{align}\]
So, we got \[d=4\]
Now, we know all the values of \[a,b,c,d\]
Now put \[a=1\], \[b=-2\], \[c=3\], \[d=4\] in \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\]
So now we will get
\[\Rightarrow A=\left[ \begin{matrix}
1 & -2 \\
3 & 4 \\
\end{matrix} \right]\]
From there we were asked to find the matrix \[A\]. As per the question we got\[A=\left[ \begin{matrix}
1 & -2 \\
3 & 4 \\
\end{matrix} \right]\].
Note: Students should be careful while doing matrix multiplication. During multiplication we have to multiply rows of the first matrix to the columns of the second matrix. Students should be accurate in calculations. Even small calculation mistakes can make large errors in the answer while finding the matrix \[A\].
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

