
Find matrix $A$ such that $\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
1&0 \\
{ - 3}&4
\end{array}} \right]A = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]$
Answer
577.2k+ views
Hint: In this question, the multiplication of two matrices are given and its product as well. Here one thing that is much more important about a matrix is “order of a matrix”. So, multiplication of two matrices will be only possible when $\left( {{M_{a \times b }} \times {R_{ b \times c}}} \right)$ column of first matrix will be equal to row of second matrix. To solve it we have to use this property.
Step-by-step Solution:
Given:$\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
1&0 \\
{ - 3}&4
\end{array}} \right]A = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]$ so find $A$
As the multiplication of two matrices is given in which the first matrix is the order of $3 \times 2$ . Second matrix $A$ will be the order of $2 \times n$ where $n$ be a number. When we look at the multiplication of two matrices and its result will reach at the conclusion:
$
{\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
1&0 \\
{ - 3}&4
\end{array}} \right]_{3 \times 2}}{\left[ {\begin{array}{*{20}{c}}
{}&{} \\
{}&{} \\
{}&{}
\end{array}} \right]_{2 \times n}} = {\left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]_{3 \times 2}} \\
\because 3 \times 2,2 \times n = 3 \times 2 \\
$
$\therefore $ Value of $n = 2$
So, matrix $A$ will be order of $2 \times 2,A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}}
\end{array}} \right)$
$\because \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
1&0 \\
{ - 3}&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]$
Performing multiplication operation,
$\left[ {\begin{array}{*{20}{c}}
{2{a_{11}} - {a_{21}}}&{2{a_{12}} - {a_{22}}} \\
{{a_{11}} + 0}&{{a_{12}} + 0} \\
{ - 3{a_{11}} + 4{a_{21}}}&{ - 3{a_{12}} + 4{a_{22}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]$
Now, according to position of elements in the matrix, we equate them correspondingly,
$
\Rightarrow 2{a_{11}} - {a_{21}} = - 1 \to \left( 1 \right) \\
\Rightarrow 2{a_{12}} - {a_{22}} = - 8 \to \left( 2 \right) \\
\Rightarrow {a_{11}} = 1 \to \left( 3 \right) \\
\Rightarrow {a_{12}} = - 2 \to \left( 4 \right) \\
\Rightarrow - 3{a_{11}} + 4{a_{21}} = 9 \to \left( 5 \right) \\
\Rightarrow - 3{a_{12}} + 4{a_{22}} = 22 \to \left( 6 \right) \\
$
Now, putting the value of equation $\left( 3 \right)$ in equation$\left( 1 \right)$, we have
$
\because 2{a_{11}} - {a_{21}} = - 1 \\
\Rightarrow 2 \times 1 - {a_{21}} = - 1 \\
\Rightarrow - {a_{21}} = - 1 - 2 \\
\Rightarrow - {a_{21}} = - 3 \\
\therefore {a_{21}} = 3 \\
$
Now, putting the value of equation $\left( 4 \right)$ in equation$\left( 2 \right)$, we have
$
\because 2{a_{12}} - {a_{22}} = - 8 \\
\Rightarrow 2 \times \left( { - 2} \right) - {a_{22}} = - 8 \\
\Rightarrow - {a_{22}} = - 8 + 4 \\
\Rightarrow - {a_{22}} = - 4 \\
\therefore {a_{22}} = 4 \\
$
So, matrix $A = \left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
3&4
\end{array}} \right]$
Note:
This is a matrix question so for a student matrix multiplication should be known. So, order is important. After that it can be solved very easily.
Step-by-step Solution:
Given:$\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
1&0 \\
{ - 3}&4
\end{array}} \right]A = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]$ so find $A$
As the multiplication of two matrices is given in which the first matrix is the order of $3 \times 2$ . Second matrix $A$ will be the order of $2 \times n$ where $n$ be a number. When we look at the multiplication of two matrices and its result will reach at the conclusion:
$
{\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
1&0 \\
{ - 3}&4
\end{array}} \right]_{3 \times 2}}{\left[ {\begin{array}{*{20}{c}}
{}&{} \\
{}&{} \\
{}&{}
\end{array}} \right]_{2 \times n}} = {\left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]_{3 \times 2}} \\
\because 3 \times 2,2 \times n = 3 \times 2 \\
$
$\therefore $ Value of $n = 2$
So, matrix $A$ will be order of $2 \times 2,A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}}
\end{array}} \right)$
$\because \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
1&0 \\
{ - 3}&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}} \\
{{a_{21}}}&{{a_{22}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]$
Performing multiplication operation,
$\left[ {\begin{array}{*{20}{c}}
{2{a_{11}} - {a_{21}}}&{2{a_{12}} - {a_{22}}} \\
{{a_{11}} + 0}&{{a_{12}} + 0} \\
{ - 3{a_{11}} + 4{a_{21}}}&{ - 3{a_{12}} + 4{a_{22}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 8} \\
1&{ - 2} \\
9&{22}
\end{array}} \right]$
Now, according to position of elements in the matrix, we equate them correspondingly,
$
\Rightarrow 2{a_{11}} - {a_{21}} = - 1 \to \left( 1 \right) \\
\Rightarrow 2{a_{12}} - {a_{22}} = - 8 \to \left( 2 \right) \\
\Rightarrow {a_{11}} = 1 \to \left( 3 \right) \\
\Rightarrow {a_{12}} = - 2 \to \left( 4 \right) \\
\Rightarrow - 3{a_{11}} + 4{a_{21}} = 9 \to \left( 5 \right) \\
\Rightarrow - 3{a_{12}} + 4{a_{22}} = 22 \to \left( 6 \right) \\
$
Now, putting the value of equation $\left( 3 \right)$ in equation$\left( 1 \right)$, we have
$
\because 2{a_{11}} - {a_{21}} = - 1 \\
\Rightarrow 2 \times 1 - {a_{21}} = - 1 \\
\Rightarrow - {a_{21}} = - 1 - 2 \\
\Rightarrow - {a_{21}} = - 3 \\
\therefore {a_{21}} = 3 \\
$
Now, putting the value of equation $\left( 4 \right)$ in equation$\left( 2 \right)$, we have
$
\because 2{a_{12}} - {a_{22}} = - 8 \\
\Rightarrow 2 \times \left( { - 2} \right) - {a_{22}} = - 8 \\
\Rightarrow - {a_{22}} = - 8 + 4 \\
\Rightarrow - {a_{22}} = - 4 \\
\therefore {a_{22}} = 4 \\
$
So, matrix $A = \left[ {\begin{array}{*{20}{c}}
1&{ - 2} \\
3&4
\end{array}} \right]$
Note:
This is a matrix question so for a student matrix multiplication should be known. So, order is important. After that it can be solved very easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

