
How do you find \[\left[ {f \circ g} \right]\left( 2 \right)\]and\[\left[ {g \circ f} \right]\left( 2 \right)\]given\[f\left( x \right) = 2x - 1,\]\[g\left( x \right) = - 3x?\]
Answer
455.1k+ views
Hint:This question involves the arithmetic operation like addition/ subtraction/ multiplication/ division. We need to know how to find the value of \[x\]from the terms\[\left[ {f \circ g} \right]\left( 2 \right)\]and\[\left[ {g \circ f} \right]\left( 2 \right)\]. We need to know the arithmetic functions with the involvement of different signs. Also, we need to know the basic formulae with the involvement of\[f\left( {g\left( x \right)} \right)\]and\[g\left( {f\left( x \right)} \right)\]. 39g
Complete step by step solution:
The given question is shown below,
\[\left[ {f \circ g} \right]\left( 2 \right) = ? \to \left( 1 \right)\]
\[\left[ {g \circ f} \right]\left( 2 \right) = ? \to \left( 2 \right)\]
\[f\left( x \right) = 2x - 1 \to \left( 3 \right)\]
\[g\left( x \right) = - 3x \to \left( 4 \right)\]
We know that,
\[\left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right) \to \left( 5 \right)\]
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right) \to \left( 6 \right)\]
By comparing the equation\[\left( 1 \right)\]and\[\left( 5 \right)\], we get\[x = 2\].
So, the equation\[\left( 5 \right)\]becomes,
\[\left( 5 \right) \to \left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right)\]
Put\[x = 2\], so we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) \to \left( 7 \right)\]
So, we need to find
\[g\left( 2 \right) = ?\]
We know that
From \[\left( 4 \right) \to g\left( x \right) = - 3x\]
Put\[x = 2\], so we get
\[g\left( 2 \right) = - 3 \times 2 = - 6\]
So, the equation\[\left( 7 \right)\]becomes,
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right)\]
We need to find\[f\left( { - 6} \right) = ?\]
We know that,
\[\left( 3 \right) \to f\left( x \right) = 2x - 1\]
Put \[x = - 6\], so we get
\[
f\left( { - 6} \right) = \left( {2 \times - 6} \right) - 1 \\
f\left( { - 6} \right) = - 12 - 1 \\
f\left( { - 6} \right) - 13 \\
\]
So, we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right) = - 13 \to \left( A \right)\]
Next, we need to solve
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
By comparing the equation\[\left( 2 \right)\]and\[\left( 6 \right)\], we get\[x = 2\]
So, the equation\[\left( 6 \right)\]becomes,
\[\left( 6 \right) \to \left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
Put\[x = 2\]
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right)\]
We need to find\[f\left( 2 \right) = ?\]
We know that,
\[f\left( x \right) = 2x - 1\]
Put\[x = 2\]
\[f\left( 2 \right) = \left( {2 \times 2} \right) - 1\]
\[
f\left( 2 \right) = 4 - 1 \\
f\left( 2 \right) = 3 \\
\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right)\]
So, we need to find\[g\left( 3 \right) = ?\]
We know that,
\[g\left( x \right) = - 3x\]
Put\[x = 3\]
\[g\left( 3 \right) = - 3 \times 3\]
\[g\left( 3 \right) = - 9\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right) = - 9\]
So, the final answer is,
\[
\left[ {f \circ g} \right]\left( 2 \right) = - 13 \\
\left[ {g \circ f} \right]\left( 2 \right) = - 9 \\
\]
Note: This question involves the operation of addition/ subtraction/ multiplication/ division. To solve this type of question we would remember the formula for\[\left[ {f \circ g} \right]\left( x \right)\]and\[\left[ {g \circ f} \right]\left( x \right)\]. Also, we need to remember the following things when multiplying different sign terms,
1) When a negative term is multiplied by a negative term, the final answer will be a positive
term.
2) When a positive term is multiplied by a positive term, the final answer will be a positive
term.
3) When a negative term is multiplied with a positive term, the final answer will be a negative term.
Complete step by step solution:
The given question is shown below,
\[\left[ {f \circ g} \right]\left( 2 \right) = ? \to \left( 1 \right)\]
\[\left[ {g \circ f} \right]\left( 2 \right) = ? \to \left( 2 \right)\]
\[f\left( x \right) = 2x - 1 \to \left( 3 \right)\]
\[g\left( x \right) = - 3x \to \left( 4 \right)\]
We know that,
\[\left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right) \to \left( 5 \right)\]
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right) \to \left( 6 \right)\]
By comparing the equation\[\left( 1 \right)\]and\[\left( 5 \right)\], we get\[x = 2\].
So, the equation\[\left( 5 \right)\]becomes,
\[\left( 5 \right) \to \left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right)\]
Put\[x = 2\], so we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) \to \left( 7 \right)\]
So, we need to find
\[g\left( 2 \right) = ?\]
We know that
From \[\left( 4 \right) \to g\left( x \right) = - 3x\]
Put\[x = 2\], so we get
\[g\left( 2 \right) = - 3 \times 2 = - 6\]
So, the equation\[\left( 7 \right)\]becomes,
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right)\]
We need to find\[f\left( { - 6} \right) = ?\]
We know that,
\[\left( 3 \right) \to f\left( x \right) = 2x - 1\]
Put \[x = - 6\], so we get
\[
f\left( { - 6} \right) = \left( {2 \times - 6} \right) - 1 \\
f\left( { - 6} \right) = - 12 - 1 \\
f\left( { - 6} \right) - 13 \\
\]
So, we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right) = - 13 \to \left( A \right)\]
Next, we need to solve
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
By comparing the equation\[\left( 2 \right)\]and\[\left( 6 \right)\], we get\[x = 2\]
So, the equation\[\left( 6 \right)\]becomes,
\[\left( 6 \right) \to \left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
Put\[x = 2\]
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right)\]
We need to find\[f\left( 2 \right) = ?\]
We know that,
\[f\left( x \right) = 2x - 1\]
Put\[x = 2\]
\[f\left( 2 \right) = \left( {2 \times 2} \right) - 1\]
\[
f\left( 2 \right) = 4 - 1 \\
f\left( 2 \right) = 3 \\
\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right)\]
So, we need to find\[g\left( 3 \right) = ?\]
We know that,
\[g\left( x \right) = - 3x\]
Put\[x = 3\]
\[g\left( 3 \right) = - 3 \times 3\]
\[g\left( 3 \right) = - 9\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right) = - 9\]
So, the final answer is,
\[
\left[ {f \circ g} \right]\left( 2 \right) = - 13 \\
\left[ {g \circ f} \right]\left( 2 \right) = - 9 \\
\]
Note: This question involves the operation of addition/ subtraction/ multiplication/ division. To solve this type of question we would remember the formula for\[\left[ {f \circ g} \right]\left( x \right)\]and\[\left[ {g \circ f} \right]\left( x \right)\]. Also, we need to remember the following things when multiplying different sign terms,
1) When a negative term is multiplied by a negative term, the final answer will be a positive
term.
2) When a positive term is multiplied by a positive term, the final answer will be a positive
term.
3) When a negative term is multiplied with a positive term, the final answer will be a negative term.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
