
How do you find \[\left[ {f \circ g} \right]\left( 2 \right)\]and\[\left[ {g \circ f} \right]\left( 2 \right)\]given\[f\left( x \right) = 2x - 1,\]\[g\left( x \right) = - 3x?\]
Answer
536.4k+ views
Hint:This question involves the arithmetic operation like addition/ subtraction/ multiplication/ division. We need to know how to find the value of \[x\]from the terms\[\left[ {f \circ g} \right]\left( 2 \right)\]and\[\left[ {g \circ f} \right]\left( 2 \right)\]. We need to know the arithmetic functions with the involvement of different signs. Also, we need to know the basic formulae with the involvement of\[f\left( {g\left( x \right)} \right)\]and\[g\left( {f\left( x \right)} \right)\]. 39g
Complete step by step solution:
The given question is shown below,
\[\left[ {f \circ g} \right]\left( 2 \right) = ? \to \left( 1 \right)\]
\[\left[ {g \circ f} \right]\left( 2 \right) = ? \to \left( 2 \right)\]
\[f\left( x \right) = 2x - 1 \to \left( 3 \right)\]
\[g\left( x \right) = - 3x \to \left( 4 \right)\]
We know that,
\[\left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right) \to \left( 5 \right)\]
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right) \to \left( 6 \right)\]
By comparing the equation\[\left( 1 \right)\]and\[\left( 5 \right)\], we get\[x = 2\].
So, the equation\[\left( 5 \right)\]becomes,
\[\left( 5 \right) \to \left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right)\]
Put\[x = 2\], so we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) \to \left( 7 \right)\]
So, we need to find
\[g\left( 2 \right) = ?\]
We know that
From \[\left( 4 \right) \to g\left( x \right) = - 3x\]
Put\[x = 2\], so we get
\[g\left( 2 \right) = - 3 \times 2 = - 6\]
So, the equation\[\left( 7 \right)\]becomes,
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right)\]
We need to find\[f\left( { - 6} \right) = ?\]
We know that,
\[\left( 3 \right) \to f\left( x \right) = 2x - 1\]
Put \[x = - 6\], so we get
\[
f\left( { - 6} \right) = \left( {2 \times - 6} \right) - 1 \\
f\left( { - 6} \right) = - 12 - 1 \\
f\left( { - 6} \right) - 13 \\
\]
So, we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right) = - 13 \to \left( A \right)\]
Next, we need to solve
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
By comparing the equation\[\left( 2 \right)\]and\[\left( 6 \right)\], we get\[x = 2\]
So, the equation\[\left( 6 \right)\]becomes,
\[\left( 6 \right) \to \left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
Put\[x = 2\]
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right)\]
We need to find\[f\left( 2 \right) = ?\]
We know that,
\[f\left( x \right) = 2x - 1\]
Put\[x = 2\]
\[f\left( 2 \right) = \left( {2 \times 2} \right) - 1\]
\[
f\left( 2 \right) = 4 - 1 \\
f\left( 2 \right) = 3 \\
\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right)\]
So, we need to find\[g\left( 3 \right) = ?\]
We know that,
\[g\left( x \right) = - 3x\]
Put\[x = 3\]
\[g\left( 3 \right) = - 3 \times 3\]
\[g\left( 3 \right) = - 9\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right) = - 9\]
So, the final answer is,
\[
\left[ {f \circ g} \right]\left( 2 \right) = - 13 \\
\left[ {g \circ f} \right]\left( 2 \right) = - 9 \\
\]
Note: This question involves the operation of addition/ subtraction/ multiplication/ division. To solve this type of question we would remember the formula for\[\left[ {f \circ g} \right]\left( x \right)\]and\[\left[ {g \circ f} \right]\left( x \right)\]. Also, we need to remember the following things when multiplying different sign terms,
1) When a negative term is multiplied by a negative term, the final answer will be a positive
term.
2) When a positive term is multiplied by a positive term, the final answer will be a positive
term.
3) When a negative term is multiplied with a positive term, the final answer will be a negative term.
Complete step by step solution:
The given question is shown below,
\[\left[ {f \circ g} \right]\left( 2 \right) = ? \to \left( 1 \right)\]
\[\left[ {g \circ f} \right]\left( 2 \right) = ? \to \left( 2 \right)\]
\[f\left( x \right) = 2x - 1 \to \left( 3 \right)\]
\[g\left( x \right) = - 3x \to \left( 4 \right)\]
We know that,
\[\left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right) \to \left( 5 \right)\]
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right) \to \left( 6 \right)\]
By comparing the equation\[\left( 1 \right)\]and\[\left( 5 \right)\], we get\[x = 2\].
So, the equation\[\left( 5 \right)\]becomes,
\[\left( 5 \right) \to \left[ {f \circ g} \right]\left( x \right) = f\left( {g\left( x \right)} \right)\]
Put\[x = 2\], so we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) \to \left( 7 \right)\]
So, we need to find
\[g\left( 2 \right) = ?\]
We know that
From \[\left( 4 \right) \to g\left( x \right) = - 3x\]
Put\[x = 2\], so we get
\[g\left( 2 \right) = - 3 \times 2 = - 6\]
So, the equation\[\left( 7 \right)\]becomes,
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right)\]
We need to find\[f\left( { - 6} \right) = ?\]
We know that,
\[\left( 3 \right) \to f\left( x \right) = 2x - 1\]
Put \[x = - 6\], so we get
\[
f\left( { - 6} \right) = \left( {2 \times - 6} \right) - 1 \\
f\left( { - 6} \right) = - 12 - 1 \\
f\left( { - 6} \right) - 13 \\
\]
So, we get
\[\left[ {f \circ g} \right]\left( 2 \right) = f\left( {g\left( 2 \right)} \right) = f\left( { - 6} \right) = - 13 \to \left( A \right)\]
Next, we need to solve
\[\left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
By comparing the equation\[\left( 2 \right)\]and\[\left( 6 \right)\], we get\[x = 2\]
So, the equation\[\left( 6 \right)\]becomes,
\[\left( 6 \right) \to \left[ {g \circ f} \right]\left( x \right) = g\left( {f\left( x \right)} \right)\]
Put\[x = 2\]
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right)\]
We need to find\[f\left( 2 \right) = ?\]
We know that,
\[f\left( x \right) = 2x - 1\]
Put\[x = 2\]
\[f\left( 2 \right) = \left( {2 \times 2} \right) - 1\]
\[
f\left( 2 \right) = 4 - 1 \\
f\left( 2 \right) = 3 \\
\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right)\]
So, we need to find\[g\left( 3 \right) = ?\]
We know that,
\[g\left( x \right) = - 3x\]
Put\[x = 3\]
\[g\left( 3 \right) = - 3 \times 3\]
\[g\left( 3 \right) = - 9\]
So, we get
\[\left[ {g \circ f} \right]\left( 2 \right) = g\left( {f\left( 2 \right)} \right) = g\left( 3 \right) = - 9\]
So, the final answer is,
\[
\left[ {f \circ g} \right]\left( 2 \right) = - 13 \\
\left[ {g \circ f} \right]\left( 2 \right) = - 9 \\
\]
Note: This question involves the operation of addition/ subtraction/ multiplication/ division. To solve this type of question we would remember the formula for\[\left[ {f \circ g} \right]\left( x \right)\]and\[\left[ {g \circ f} \right]\left( x \right)\]. Also, we need to remember the following things when multiplying different sign terms,
1) When a negative term is multiplied by a negative term, the final answer will be a positive
term.
2) When a positive term is multiplied by a positive term, the final answer will be a positive
term.
3) When a negative term is multiplied with a positive term, the final answer will be a negative term.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

