
Find ‘k’ if $A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$, if \[{{A}^{2}}=kA-2I\]
Answer
554.4k+ views
Hint: To solve this question firstly, we will find the value of \[{{A}^{2}}\] and 2I. then by re – arranging the equation \[{{A}^{2}}=kA-2I\] as \[{{A}^{2}}+2I=kA\]. And then we will find the inverse of matrix A and will multiply the inverse A on both side of equation, \[{{A}^{2}}+2I=kA\], we will get matrix k, which is equals to\[k={{A}^{-1}}\left( {{A}^{2}}+2I \right)\].
Complete step by step answer:
Now, let us first find the value of \[{{A}^{2}}\].
\[{{A}^{2}}\] means A.A or,
\[{{A}^{2}}=A.A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
To multiply two matrix, what we do is, we multiply first row of first matrix with elements of first and second column of second matrix and values are considered as new row of new matrix formd and same goes with second raw of first matrix to second column of second matrix.
So, \[{{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
\[=\left[ \begin{matrix}
3\times 3+4\times -2 & 3\times -2+(-2)\times (-2) \\
4\times 3+4\times -2 & 4\times -2+(-2)\times (-2) \\
\end{matrix} \right]\]
On simplification, we get
\[=\left[ \begin{matrix}
9+(-8) & -6+4 \\
12-8 & -8+4 \\
\end{matrix} \right]\]
\[=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]\]
Now, let us find ${{A}^{-1}}$ of matrix $A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
We know that, ${{A}^{-1}}=\dfrac{1}{ad-bc}\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$
Here, a = 3, b = 4, c = -2 and d = -2.
So, ${{A}^{-1}}=\dfrac{1}{3\times -2-(-2)\times 4}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$
On simplification, we get
${{A}^{-1}}=\dfrac{1}{-6+8}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$
${{A}^{-1}}=\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$
And,$2I=2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$=\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
Now, we have in question that, \[{{A}^{2}}=kA-2I\]
So, putting all the values, we get
\[{{A}^{2}}=kA-2I\]
\[\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]\]
Adding matrix $\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$on both sides, we get
\[\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]+\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]+\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]\]
\[\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
On multiplying, with matrix ${{A}^{-1}}=\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$, we get
\[\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]=k\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
On solving using matrix multiplication as discussed above, we get
\[\dfrac{1}{2}\left[ \begin{matrix}
-2\times 3+2\times 4 & -2\times -2+2\times -2 \\
-4\times 3+3\times 4 & -4\times -2+3\times -2 \\
\end{matrix} \right]=k\dfrac{1}{2}\left[ \begin{matrix}
-2\times 3+2\times 4 & -2\times -2+2\times -2 \\
-4\times 3+3\times 4 & -4\times -2+3\times -2 \\
\end{matrix} \right]\]
On simplifying, we get
\[\dfrac{1}{2}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]=k\dfrac{1}{2}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]\]
On simplifying, we get
\[\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=k\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
Now, on both sides we can see that we have an identity matrix and for this condition, k must be unit number.
So, k = 1
Note: Always remember that if we have matrix A of order $n\times n$ , then matrix ${{A}^{n}}$ and inverse of matrix A,${{A}^{-1}}$ will also be of order $n\times n$. Remember that if we have $A=\left[ \begin{matrix}
a & c \\
b & d \\
\end{matrix} \right]$, then inverse of A, ${{A}^{-1}}$ will be equal to ${{A}^{-1}}=\dfrac{1}{ad-bc}\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$. I matrix is called identity matrix and is denoted by $I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$. Try not to make any calculation errors.
Complete step by step answer:
Now, let us first find the value of \[{{A}^{2}}\].
\[{{A}^{2}}\] means A.A or,
\[{{A}^{2}}=A.A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
To multiply two matrix, what we do is, we multiply first row of first matrix with elements of first and second column of second matrix and values are considered as new row of new matrix formd and same goes with second raw of first matrix to second column of second matrix.
So, \[{{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
\[=\left[ \begin{matrix}
3\times 3+4\times -2 & 3\times -2+(-2)\times (-2) \\
4\times 3+4\times -2 & 4\times -2+(-2)\times (-2) \\
\end{matrix} \right]\]
On simplification, we get
\[=\left[ \begin{matrix}
9+(-8) & -6+4 \\
12-8 & -8+4 \\
\end{matrix} \right]\]
\[=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]\]
Now, let us find ${{A}^{-1}}$ of matrix $A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
We know that, ${{A}^{-1}}=\dfrac{1}{ad-bc}\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$
Here, a = 3, b = 4, c = -2 and d = -2.
So, ${{A}^{-1}}=\dfrac{1}{3\times -2-(-2)\times 4}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$
On simplification, we get
${{A}^{-1}}=\dfrac{1}{-6+8}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$
${{A}^{-1}}=\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$
And,$2I=2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$=\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
Now, we have in question that, \[{{A}^{2}}=kA-2I\]
So, putting all the values, we get
\[{{A}^{2}}=kA-2I\]
\[\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]\]
Adding matrix $\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$on both sides, we get
\[\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]+\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]+\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]\]
\[\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
On multiplying, with matrix ${{A}^{-1}}=\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]$, we get
\[\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]=k\dfrac{1}{2}\left[ \begin{matrix}
-2 & 2 \\
-4 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\]
On solving using matrix multiplication as discussed above, we get
\[\dfrac{1}{2}\left[ \begin{matrix}
-2\times 3+2\times 4 & -2\times -2+2\times -2 \\
-4\times 3+3\times 4 & -4\times -2+3\times -2 \\
\end{matrix} \right]=k\dfrac{1}{2}\left[ \begin{matrix}
-2\times 3+2\times 4 & -2\times -2+2\times -2 \\
-4\times 3+3\times 4 & -4\times -2+3\times -2 \\
\end{matrix} \right]\]
On simplifying, we get
\[\dfrac{1}{2}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]=k\dfrac{1}{2}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]\]
On simplifying, we get
\[\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=k\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
Now, on both sides we can see that we have an identity matrix and for this condition, k must be unit number.
So, k = 1
Note: Always remember that if we have matrix A of order $n\times n$ , then matrix ${{A}^{n}}$ and inverse of matrix A,${{A}^{-1}}$ will also be of order $n\times n$. Remember that if we have $A=\left[ \begin{matrix}
a & c \\
b & d \\
\end{matrix} \right]$, then inverse of A, ${{A}^{-1}}$ will be equal to ${{A}^{-1}}=\dfrac{1}{ad-bc}\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$. I matrix is called identity matrix and is denoted by $I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$. Try not to make any calculation errors.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

