
Find $ \int {(x + 3)\sqrt {3 - 4x - {x^2}} dx} $
Answer
556.2k+ views
Hint: In common words, integration can be defined as bringing together and uniting things. In differential calculus, we have to find the derivative or differential of a given function. But integration is the inverse process of differentiation. In integration, we have to find the function whose differentiation is given. Integrals of this type can be converted into standard form and then solved with the help of some basic formulas of integration.
Complete step-by-step answer:
Let $ I = \int {(x + 3)\sqrt {3 - 4x - {x^2}} } $
The given integral is of the form $ \int {(px + q)\sqrt {a{x^2} + bx + c} dx} $
To simplify this equation, let $ x + 3 = A\dfrac{d}{{dx}}(3 - 4x - {x^2}) + B $
Differentiating the right-hand side, we get
$
x + 3 = A( - 4 - 2x) + B \\
\Rightarrow x + 3 = - 4A - 2Ax + B \\
\Rightarrow x + 3 = - 4A + B - 2Ax \\
$
Now on comparing both sides, we get
$
- 2A = 1 \\
\Rightarrow A = - \dfrac{1}{2} \\
$
And $ - 4A + B = 3 $
Put the value of A in the above equation, we get -
$
- 4( - \dfrac{1}{2}) + B = 3 \\
\Rightarrow 2 + B = 3 \\
\Rightarrow B = 1 \;
$
Thus, we can say that $ x + 3 = - \dfrac{1}{2}( - 4 - 2x) + 1 $
Putting this value in the equation given in the question,
$ I = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} } dx + \int {\sqrt {3 - 4x - {x^2}} } dx $
Now let $ I = {I_1} + {I_2} $ where $ {I_1} = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} dx} $ and $ {I_2} = \sqrt {3 - 4x - {x^2}} dx $
Let us solve $ {I_1} $ first,
Put $ 3 - 4x - {x^2} = t $
On differentiating both sides, we get
$
- 4 - 2x = \dfrac{{dt}}{{dx}} \\
\Rightarrow ( - 4 - 2x)dx = dt \;
$
Now substitute the value of $ ( - 4 - 2x) $ as $ dt $ in $ {I_1} $
$
{I_1} = - \dfrac{1}{2}\int {\sqrt t dt} \\
\Rightarrow {I_1} = - \dfrac{1}{2}(\dfrac{2}{3}{t^{\dfrac{3}{2}}}) + {C_1} \\
\Rightarrow {I_1} = - \dfrac{1}{3}{(t)^{\dfrac{3}{2}}} + {C_1} \;
$
Substitute the value of $ t $ back as $ 3 - 4x - {x^2} $
$ {I_1} = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + {C_1} $
Now,
$
{I_2} = \sqrt {(3 - 4x - {x^2})} dx \\
{I_2} = \sqrt { - ({x^2} + 4x - 3)} dx \\
$
We can rewrite the above equation as,
$
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 4 - 3 \\
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 7 \\
{x^2} + 4x - 3 = {(x + 2)^2} - {(\sqrt 7 )^2} \;
$
Putting this value in $ {I_2} $ we have,
$
{I_2} = \int {\sqrt { - [{{(x + 2)}^2} - {{(\sqrt 7 )}^2}]} } dx \\
{I_2} = \int {\sqrt {[{{(\sqrt 7 )}^2} - {{(x + 2)}^2}]} dx} \;
$
We know that $ \int {\sqrt {{a^2} - {x^2}} dx = } [\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c] $
Using this formula to solve $ {I_2} $ we get –
$
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {7 - {{(x + 2)}^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \\
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \;
$
Putting the value of $ {I_1} $ and $ {I_2} $ in $ I $ , we get –
$ I = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C $
Where $ C = {C_1} + {C_2} $
Thus, $ \int {(x + 2)\sqrt {3 - 4x - {x^2}} dx = - \dfrac{1}{3}{{(3 - 4x - {x^2})}^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{{\sin }^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C} $
Note: A definite integral is an integral expressed with upper and lower limits while an indefinite integral is expressed without limits. The derivative of a function is unique but integral or anti-derivative of a function can be infinite. Here, C is an arbitrary constant by varying which one can get different values of integral of a function.
Complete step-by-step answer:
Let $ I = \int {(x + 3)\sqrt {3 - 4x - {x^2}} } $
The given integral is of the form $ \int {(px + q)\sqrt {a{x^2} + bx + c} dx} $
To simplify this equation, let $ x + 3 = A\dfrac{d}{{dx}}(3 - 4x - {x^2}) + B $
Differentiating the right-hand side, we get
$
x + 3 = A( - 4 - 2x) + B \\
\Rightarrow x + 3 = - 4A - 2Ax + B \\
\Rightarrow x + 3 = - 4A + B - 2Ax \\
$
Now on comparing both sides, we get
$
- 2A = 1 \\
\Rightarrow A = - \dfrac{1}{2} \\
$
And $ - 4A + B = 3 $
Put the value of A in the above equation, we get -
$
- 4( - \dfrac{1}{2}) + B = 3 \\
\Rightarrow 2 + B = 3 \\
\Rightarrow B = 1 \;
$
Thus, we can say that $ x + 3 = - \dfrac{1}{2}( - 4 - 2x) + 1 $
Putting this value in the equation given in the question,
$ I = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} } dx + \int {\sqrt {3 - 4x - {x^2}} } dx $
Now let $ I = {I_1} + {I_2} $ where $ {I_1} = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} dx} $ and $ {I_2} = \sqrt {3 - 4x - {x^2}} dx $
Let us solve $ {I_1} $ first,
Put $ 3 - 4x - {x^2} = t $
On differentiating both sides, we get
$
- 4 - 2x = \dfrac{{dt}}{{dx}} \\
\Rightarrow ( - 4 - 2x)dx = dt \;
$
Now substitute the value of $ ( - 4 - 2x) $ as $ dt $ in $ {I_1} $
$
{I_1} = - \dfrac{1}{2}\int {\sqrt t dt} \\
\Rightarrow {I_1} = - \dfrac{1}{2}(\dfrac{2}{3}{t^{\dfrac{3}{2}}}) + {C_1} \\
\Rightarrow {I_1} = - \dfrac{1}{3}{(t)^{\dfrac{3}{2}}} + {C_1} \;
$
Substitute the value of $ t $ back as $ 3 - 4x - {x^2} $
$ {I_1} = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + {C_1} $
Now,
$
{I_2} = \sqrt {(3 - 4x - {x^2})} dx \\
{I_2} = \sqrt { - ({x^2} + 4x - 3)} dx \\
$
We can rewrite the above equation as,
$
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 4 - 3 \\
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 7 \\
{x^2} + 4x - 3 = {(x + 2)^2} - {(\sqrt 7 )^2} \;
$
Putting this value in $ {I_2} $ we have,
$
{I_2} = \int {\sqrt { - [{{(x + 2)}^2} - {{(\sqrt 7 )}^2}]} } dx \\
{I_2} = \int {\sqrt {[{{(\sqrt 7 )}^2} - {{(x + 2)}^2}]} dx} \;
$
We know that $ \int {\sqrt {{a^2} - {x^2}} dx = } [\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c] $
Using this formula to solve $ {I_2} $ we get –
$
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {7 - {{(x + 2)}^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \\
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \;
$
Putting the value of $ {I_1} $ and $ {I_2} $ in $ I $ , we get –
$ I = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C $
Where $ C = {C_1} + {C_2} $
Thus, $ \int {(x + 2)\sqrt {3 - 4x - {x^2}} dx = - \dfrac{1}{3}{{(3 - 4x - {x^2})}^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{{\sin }^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C} $
Note: A definite integral is an integral expressed with upper and lower limits while an indefinite integral is expressed without limits. The derivative of a function is unique but integral or anti-derivative of a function can be infinite. Here, C is an arbitrary constant by varying which one can get different values of integral of a function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

