
Find $ \int {(x + 3)\sqrt {3 - 4x - {x^2}} dx} $
Answer
571.5k+ views
Hint: In common words, integration can be defined as bringing together and uniting things. In differential calculus, we have to find the derivative or differential of a given function. But integration is the inverse process of differentiation. In integration, we have to find the function whose differentiation is given. Integrals of this type can be converted into standard form and then solved with the help of some basic formulas of integration.
Complete step-by-step answer:
Let $ I = \int {(x + 3)\sqrt {3 - 4x - {x^2}} } $
The given integral is of the form $ \int {(px + q)\sqrt {a{x^2} + bx + c} dx} $
To simplify this equation, let $ x + 3 = A\dfrac{d}{{dx}}(3 - 4x - {x^2}) + B $
Differentiating the right-hand side, we get
$
x + 3 = A( - 4 - 2x) + B \\
\Rightarrow x + 3 = - 4A - 2Ax + B \\
\Rightarrow x + 3 = - 4A + B - 2Ax \\
$
Now on comparing both sides, we get
$
- 2A = 1 \\
\Rightarrow A = - \dfrac{1}{2} \\
$
And $ - 4A + B = 3 $
Put the value of A in the above equation, we get -
$
- 4( - \dfrac{1}{2}) + B = 3 \\
\Rightarrow 2 + B = 3 \\
\Rightarrow B = 1 \;
$
Thus, we can say that $ x + 3 = - \dfrac{1}{2}( - 4 - 2x) + 1 $
Putting this value in the equation given in the question,
$ I = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} } dx + \int {\sqrt {3 - 4x - {x^2}} } dx $
Now let $ I = {I_1} + {I_2} $ where $ {I_1} = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} dx} $ and $ {I_2} = \sqrt {3 - 4x - {x^2}} dx $
Let us solve $ {I_1} $ first,
Put $ 3 - 4x - {x^2} = t $
On differentiating both sides, we get
$
- 4 - 2x = \dfrac{{dt}}{{dx}} \\
\Rightarrow ( - 4 - 2x)dx = dt \;
$
Now substitute the value of $ ( - 4 - 2x) $ as $ dt $ in $ {I_1} $
$
{I_1} = - \dfrac{1}{2}\int {\sqrt t dt} \\
\Rightarrow {I_1} = - \dfrac{1}{2}(\dfrac{2}{3}{t^{\dfrac{3}{2}}}) + {C_1} \\
\Rightarrow {I_1} = - \dfrac{1}{3}{(t)^{\dfrac{3}{2}}} + {C_1} \;
$
Substitute the value of $ t $ back as $ 3 - 4x - {x^2} $
$ {I_1} = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + {C_1} $
Now,
$
{I_2} = \sqrt {(3 - 4x - {x^2})} dx \\
{I_2} = \sqrt { - ({x^2} + 4x - 3)} dx \\
$
We can rewrite the above equation as,
$
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 4 - 3 \\
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 7 \\
{x^2} + 4x - 3 = {(x + 2)^2} - {(\sqrt 7 )^2} \;
$
Putting this value in $ {I_2} $ we have,
$
{I_2} = \int {\sqrt { - [{{(x + 2)}^2} - {{(\sqrt 7 )}^2}]} } dx \\
{I_2} = \int {\sqrt {[{{(\sqrt 7 )}^2} - {{(x + 2)}^2}]} dx} \;
$
We know that $ \int {\sqrt {{a^2} - {x^2}} dx = } [\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c] $
Using this formula to solve $ {I_2} $ we get –
$
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {7 - {{(x + 2)}^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \\
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \;
$
Putting the value of $ {I_1} $ and $ {I_2} $ in $ I $ , we get –
$ I = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C $
Where $ C = {C_1} + {C_2} $
Thus, $ \int {(x + 2)\sqrt {3 - 4x - {x^2}} dx = - \dfrac{1}{3}{{(3 - 4x - {x^2})}^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{{\sin }^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C} $
Note: A definite integral is an integral expressed with upper and lower limits while an indefinite integral is expressed without limits. The derivative of a function is unique but integral or anti-derivative of a function can be infinite. Here, C is an arbitrary constant by varying which one can get different values of integral of a function.
Complete step-by-step answer:
Let $ I = \int {(x + 3)\sqrt {3 - 4x - {x^2}} } $
The given integral is of the form $ \int {(px + q)\sqrt {a{x^2} + bx + c} dx} $
To simplify this equation, let $ x + 3 = A\dfrac{d}{{dx}}(3 - 4x - {x^2}) + B $
Differentiating the right-hand side, we get
$
x + 3 = A( - 4 - 2x) + B \\
\Rightarrow x + 3 = - 4A - 2Ax + B \\
\Rightarrow x + 3 = - 4A + B - 2Ax \\
$
Now on comparing both sides, we get
$
- 2A = 1 \\
\Rightarrow A = - \dfrac{1}{2} \\
$
And $ - 4A + B = 3 $
Put the value of A in the above equation, we get -
$
- 4( - \dfrac{1}{2}) + B = 3 \\
\Rightarrow 2 + B = 3 \\
\Rightarrow B = 1 \;
$
Thus, we can say that $ x + 3 = - \dfrac{1}{2}( - 4 - 2x) + 1 $
Putting this value in the equation given in the question,
$ I = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} } dx + \int {\sqrt {3 - 4x - {x^2}} } dx $
Now let $ I = {I_1} + {I_2} $ where $ {I_1} = - \dfrac{1}{2}\int {( - 4 - 2x)\sqrt {3 - 4x - {x^2}} dx} $ and $ {I_2} = \sqrt {3 - 4x - {x^2}} dx $
Let us solve $ {I_1} $ first,
Put $ 3 - 4x - {x^2} = t $
On differentiating both sides, we get
$
- 4 - 2x = \dfrac{{dt}}{{dx}} \\
\Rightarrow ( - 4 - 2x)dx = dt \;
$
Now substitute the value of $ ( - 4 - 2x) $ as $ dt $ in $ {I_1} $
$
{I_1} = - \dfrac{1}{2}\int {\sqrt t dt} \\
\Rightarrow {I_1} = - \dfrac{1}{2}(\dfrac{2}{3}{t^{\dfrac{3}{2}}}) + {C_1} \\
\Rightarrow {I_1} = - \dfrac{1}{3}{(t)^{\dfrac{3}{2}}} + {C_1} \;
$
Substitute the value of $ t $ back as $ 3 - 4x - {x^2} $
$ {I_1} = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + {C_1} $
Now,
$
{I_2} = \sqrt {(3 - 4x - {x^2})} dx \\
{I_2} = \sqrt { - ({x^2} + 4x - 3)} dx \\
$
We can rewrite the above equation as,
$
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 4 - 3 \\
{x^2} + 4x - 3 = {x^2} + 4x + 4 - 7 \\
{x^2} + 4x - 3 = {(x + 2)^2} - {(\sqrt 7 )^2} \;
$
Putting this value in $ {I_2} $ we have,
$
{I_2} = \int {\sqrt { - [{{(x + 2)}^2} - {{(\sqrt 7 )}^2}]} } dx \\
{I_2} = \int {\sqrt {[{{(\sqrt 7 )}^2} - {{(x + 2)}^2}]} dx} \;
$
We know that $ \int {\sqrt {{a^2} - {x^2}} dx = } [\dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}(\dfrac{x}{a}) + c] $
Using this formula to solve $ {I_2} $ we get –
$
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {7 - {{(x + 2)}^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \\
{I_2} = [\dfrac{{x + 2}}{2}\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }}] + {C_2} \;
$
Putting the value of $ {I_1} $ and $ {I_2} $ in $ I $ , we get –
$ I = - \dfrac{1}{3}{(3 - 4x - {x^2})^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{\sin ^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C $
Where $ C = {C_1} + {C_2} $
Thus, $ \int {(x + 2)\sqrt {3 - 4x - {x^2}} dx = - \dfrac{1}{3}{{(3 - 4x - {x^2})}^{\dfrac{3}{2}}} + \dfrac{1}{2}(x + 2)\sqrt {3 - 4x - {x^2}} + \dfrac{7}{2}{{\sin }^{ - 1}}\dfrac{{x + 2}}{{\sqrt 7 }} + C} $
Note: A definite integral is an integral expressed with upper and lower limits while an indefinite integral is expressed without limits. The derivative of a function is unique but integral or anti-derivative of a function can be infinite. Here, C is an arbitrary constant by varying which one can get different values of integral of a function.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

