
Find \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \] and hence evaluate $\int {\dfrac{{dx}}{{{x^2} - 25}}} $.
Answer
507.6k+ views
Hint: Integral is either a numerical value equal to the area under the graph of a function, for some interval or a new function the derivative of which is the original function.
Complete step by step solution:
Let I $ = \int {\dfrac{1}{{{x^2} - {a^2}}}dx} $
We use the formula,\[{a^2} - {b^2} = (a - b)(a + b)\]
\[I = \int {\dfrac{1}{{(x - a)(x + a)}}} dx\]
Now, we will multiply numerator and denominator by$2a$, We have
$I = \int {\dfrac{{2a}}{{2a(x - a)(x + a)}}dx} $
$I = \dfrac{1}{{2a}}\int {\dfrac{{2a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x - x + a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x + a - x + a}}{{(x - a)(x + a)}}dx} $
\[I = \dfrac{1}{{2a}}\int {\dfrac{{(x + a) - (x - a)}}{{(x - a)(x + a)}}} dx\]
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{{x + a}}{{\left( {x + a} \right)\left( {x - a} \right)}} - \dfrac{{x - a}}{{\left( {x + a} \right)\left( {x - a} \right)}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{1}{{x - a}} - \dfrac{1}{{x + a}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\left[ {\int {\dfrac{1}{{x - a}}dx} - \int {\dfrac{1}{{x + a}}dx} } \right]$
Using the integral formula \[\int {\dfrac{{f'(x)}}{{f(x)}}dx = \log (x) + C} \], we will get
$I = \dfrac{1}{{2a}}[\log \,(x - a) - \log (x + a)] + C$
As we know that log $a - \log b = \log \dfrac{a}{b}$, we have
\[I = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]
Now, we evaluate\[\int {\dfrac{{dx}}{{{x^2} - 25}}} \]
We convert $\dfrac{{dx}}{{{x^2} - 25}}$in the form of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \]
So, \[\int {\dfrac{{dx}}{{{x^2} - {{(5)}^2}}}} \]
We will use the result of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]for solving \[\int {\dfrac{{dx}}{{{x^2}{{(5)}^2}}}} \]
Therefore, $a = 5$.
Then, \[\int {\dfrac{{dx}}{{{x^2} - 25}}} = \dfrac{1}{{2 \times 5}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C\]
\[\int {\dfrac{{dx}}{{{x^2} - 25}} = \dfrac{1}{{10}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C} \]
Note: In this type of question, students must know that the both integral values have the same sign. Then we will use the previous result for finding the next integral.
Complete step by step solution:
Let I $ = \int {\dfrac{1}{{{x^2} - {a^2}}}dx} $
We use the formula,\[{a^2} - {b^2} = (a - b)(a + b)\]
\[I = \int {\dfrac{1}{{(x - a)(x + a)}}} dx\]
Now, we will multiply numerator and denominator by$2a$, We have
$I = \int {\dfrac{{2a}}{{2a(x - a)(x + a)}}dx} $
$I = \dfrac{1}{{2a}}\int {\dfrac{{2a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x - x + a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x + a - x + a}}{{(x - a)(x + a)}}dx} $
\[I = \dfrac{1}{{2a}}\int {\dfrac{{(x + a) - (x - a)}}{{(x - a)(x + a)}}} dx\]
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{{x + a}}{{\left( {x + a} \right)\left( {x - a} \right)}} - \dfrac{{x - a}}{{\left( {x + a} \right)\left( {x - a} \right)}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{1}{{x - a}} - \dfrac{1}{{x + a}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\left[ {\int {\dfrac{1}{{x - a}}dx} - \int {\dfrac{1}{{x + a}}dx} } \right]$
Using the integral formula \[\int {\dfrac{{f'(x)}}{{f(x)}}dx = \log (x) + C} \], we will get
$I = \dfrac{1}{{2a}}[\log \,(x - a) - \log (x + a)] + C$
As we know that log $a - \log b = \log \dfrac{a}{b}$, we have
\[I = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]
Now, we evaluate\[\int {\dfrac{{dx}}{{{x^2} - 25}}} \]
We convert $\dfrac{{dx}}{{{x^2} - 25}}$in the form of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \]
So, \[\int {\dfrac{{dx}}{{{x^2} - {{(5)}^2}}}} \]
We will use the result of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]for solving \[\int {\dfrac{{dx}}{{{x^2}{{(5)}^2}}}} \]
Therefore, $a = 5$.
Then, \[\int {\dfrac{{dx}}{{{x^2} - 25}}} = \dfrac{1}{{2 \times 5}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C\]
\[\int {\dfrac{{dx}}{{{x^2} - 25}} = \dfrac{1}{{10}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C} \]
Note: In this type of question, students must know that the both integral values have the same sign. Then we will use the previous result for finding the next integral.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
