
Find \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \] and hence evaluate $\int {\dfrac{{dx}}{{{x^2} - 25}}} $.
Answer
587.7k+ views
Hint: Integral is either a numerical value equal to the area under the graph of a function, for some interval or a new function the derivative of which is the original function.
Complete step by step solution:
Let I $ = \int {\dfrac{1}{{{x^2} - {a^2}}}dx} $
We use the formula,\[{a^2} - {b^2} = (a - b)(a + b)\]
\[I = \int {\dfrac{1}{{(x - a)(x + a)}}} dx\]
Now, we will multiply numerator and denominator by$2a$, We have
$I = \int {\dfrac{{2a}}{{2a(x - a)(x + a)}}dx} $
$I = \dfrac{1}{{2a}}\int {\dfrac{{2a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x - x + a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x + a - x + a}}{{(x - a)(x + a)}}dx} $
\[I = \dfrac{1}{{2a}}\int {\dfrac{{(x + a) - (x - a)}}{{(x - a)(x + a)}}} dx\]
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{{x + a}}{{\left( {x + a} \right)\left( {x - a} \right)}} - \dfrac{{x - a}}{{\left( {x + a} \right)\left( {x - a} \right)}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{1}{{x - a}} - \dfrac{1}{{x + a}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\left[ {\int {\dfrac{1}{{x - a}}dx} - \int {\dfrac{1}{{x + a}}dx} } \right]$
Using the integral formula \[\int {\dfrac{{f'(x)}}{{f(x)}}dx = \log (x) + C} \], we will get
$I = \dfrac{1}{{2a}}[\log \,(x - a) - \log (x + a)] + C$
As we know that log $a - \log b = \log \dfrac{a}{b}$, we have
\[I = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]
Now, we evaluate\[\int {\dfrac{{dx}}{{{x^2} - 25}}} \]
We convert $\dfrac{{dx}}{{{x^2} - 25}}$in the form of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \]
So, \[\int {\dfrac{{dx}}{{{x^2} - {{(5)}^2}}}} \]
We will use the result of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]for solving \[\int {\dfrac{{dx}}{{{x^2}{{(5)}^2}}}} \]
Therefore, $a = 5$.
Then, \[\int {\dfrac{{dx}}{{{x^2} - 25}}} = \dfrac{1}{{2 \times 5}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C\]
\[\int {\dfrac{{dx}}{{{x^2} - 25}} = \dfrac{1}{{10}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C} \]
Note: In this type of question, students must know that the both integral values have the same sign. Then we will use the previous result for finding the next integral.
Complete step by step solution:
Let I $ = \int {\dfrac{1}{{{x^2} - {a^2}}}dx} $
We use the formula,\[{a^2} - {b^2} = (a - b)(a + b)\]
\[I = \int {\dfrac{1}{{(x - a)(x + a)}}} dx\]
Now, we will multiply numerator and denominator by$2a$, We have
$I = \int {\dfrac{{2a}}{{2a(x - a)(x + a)}}dx} $
$I = \dfrac{1}{{2a}}\int {\dfrac{{2a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x - x + a + a}}{{(x - a)(x + a)}}} dx$
$I = \dfrac{1}{{2a}}\int {\dfrac{{x + a - x + a}}{{(x - a)(x + a)}}dx} $
\[I = \dfrac{1}{{2a}}\int {\dfrac{{(x + a) - (x - a)}}{{(x - a)(x + a)}}} dx\]
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{{x + a}}{{\left( {x + a} \right)\left( {x - a} \right)}} - \dfrac{{x - a}}{{\left( {x + a} \right)\left( {x - a} \right)}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\int {\left\{ {\dfrac{1}{{x - a}} - \dfrac{1}{{x + a}}} \right\}dx} $
$I = \dfrac{1}{{2a}}\left[ {\int {\dfrac{1}{{x - a}}dx} - \int {\dfrac{1}{{x + a}}dx} } \right]$
Using the integral formula \[\int {\dfrac{{f'(x)}}{{f(x)}}dx = \log (x) + C} \], we will get
$I = \dfrac{1}{{2a}}[\log \,(x - a) - \log (x + a)] + C$
As we know that log $a - \log b = \log \dfrac{a}{b}$, we have
\[I = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]
Now, we evaluate\[\int {\dfrac{{dx}}{{{x^2} - 25}}} \]
We convert $\dfrac{{dx}}{{{x^2} - 25}}$in the form of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \]
So, \[\int {\dfrac{{dx}}{{{x^2} - {{(5)}^2}}}} \]
We will use the result of \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C\]for solving \[\int {\dfrac{{dx}}{{{x^2}{{(5)}^2}}}} \]
Therefore, $a = 5$.
Then, \[\int {\dfrac{{dx}}{{{x^2} - 25}}} = \dfrac{1}{{2 \times 5}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C\]
\[\int {\dfrac{{dx}}{{{x^2} - 25}} = \dfrac{1}{{10}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C} \]
Note: In this type of question, students must know that the both integral values have the same sign. Then we will use the previous result for finding the next integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

