
How do you find \[\int { - \arctan \left( {\cot x} \right)dx?} \]
Answer
478.5k+ views
Hint: In this question we have to find the integral of the tan inverse of cotangent of \[x\] . Firstly, we will simplify the expression using inverse trigonometric identity i.e., \[{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2}\] . After that we will substitute the value in the given expression and using the formula \[{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta \] we will further simplify the expression and then solve the integral. Hence, we will get the required result.
Formulas used to solve the integral are: -
(1) \[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] where \[c\] is the constant of integration
(2) \[\int a {\text{ }}dx = ax + c\] where \[c\] is the constant of integration
Complete step by step answer:
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using inverse trigonometric identity
i.e., \[{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2}\]
\[ \Rightarrow {\tan ^{ - 1}}\theta = \dfrac{\pi }{2} - {\cot ^{ - 1}}\theta \]
Here, in the question \[\theta = \cot x\]
Therefore, we get
\[{\tan ^{ - 1}}\left( {\cot x} \right) = \dfrac{\pi }{2} - {\cot ^{ - 1}}\left( {\cot x} \right)\]
So, from equation \[\left( 1 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - {{\cot }^{ - 1}}\left( {\cot x} \right)} \right)} {\text{ }}dx{\text{ }} - - - \left( 2 \right)\]
Now, we know that
\[{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta \]
From equation \[\left( 2 \right)\]
\[\theta = x\]
Therefore, \[{\cot ^{ - 1}}\left( {\cot x} \right) = x - - - \left( 3 \right)\]
Thus, using equation \[\left( 3 \right)\] in equation \[\left( 2 \right)\] we get
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)} {\text{ }}dx\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Note:
In an indefinite integral, we will put a constant of integration \[c\] not in a definite integral. Alternatively, we can solve this question by another method i.e.,
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using trigonometric identity
i.e., \[\cot x = \tan \left( {\dfrac{\pi }{2} - x} \right)\]
therefore, from the equation \[\left( 1 \right)\] we have
\[\int { - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right)dx} {\text{ }} - - - \left( 2 \right)\]
Now we know that
\[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \]
Here, \[\theta = \dfrac{\pi }{2} - x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right) = \dfrac{\pi }{2} - x\]
Therefore, from the equation \[\left( 2 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)dx} {\text{ }} - - - \left( 3 \right)\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Formulas used to solve the integral are: -
(1) \[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] where \[c\] is the constant of integration
(2) \[\int a {\text{ }}dx = ax + c\] where \[c\] is the constant of integration
Complete step by step answer:
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using inverse trigonometric identity
i.e., \[{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2}\]
\[ \Rightarrow {\tan ^{ - 1}}\theta = \dfrac{\pi }{2} - {\cot ^{ - 1}}\theta \]
Here, in the question \[\theta = \cot x\]
Therefore, we get
\[{\tan ^{ - 1}}\left( {\cot x} \right) = \dfrac{\pi }{2} - {\cot ^{ - 1}}\left( {\cot x} \right)\]
So, from equation \[\left( 1 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - {{\cot }^{ - 1}}\left( {\cot x} \right)} \right)} {\text{ }}dx{\text{ }} - - - \left( 2 \right)\]
Now, we know that
\[{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta \]
From equation \[\left( 2 \right)\]
\[\theta = x\]
Therefore, \[{\cot ^{ - 1}}\left( {\cot x} \right) = x - - - \left( 3 \right)\]
Thus, using equation \[\left( 3 \right)\] in equation \[\left( 2 \right)\] we get
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)} {\text{ }}dx\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Note:
In an indefinite integral, we will put a constant of integration \[c\] not in a definite integral. Alternatively, we can solve this question by another method i.e.,
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using trigonometric identity
i.e., \[\cot x = \tan \left( {\dfrac{\pi }{2} - x} \right)\]
therefore, from the equation \[\left( 1 \right)\] we have
\[\int { - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right)dx} {\text{ }} - - - \left( 2 \right)\]
Now we know that
\[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \]
Here, \[\theta = \dfrac{\pi }{2} - x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right) = \dfrac{\pi }{2} - x\]
Therefore, from the equation \[\left( 2 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)dx} {\text{ }} - - - \left( 3 \right)\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

