
How do you find \[\int { - \arctan \left( {\cot x} \right)dx?} \]
Answer
492.9k+ views
Hint: In this question we have to find the integral of the tan inverse of cotangent of \[x\] . Firstly, we will simplify the expression using inverse trigonometric identity i.e., \[{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2}\] . After that we will substitute the value in the given expression and using the formula \[{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta \] we will further simplify the expression and then solve the integral. Hence, we will get the required result.
Formulas used to solve the integral are: -
(1) \[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] where \[c\] is the constant of integration
(2) \[\int a {\text{ }}dx = ax + c\] where \[c\] is the constant of integration
Complete step by step answer:
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using inverse trigonometric identity
i.e., \[{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2}\]
\[ \Rightarrow {\tan ^{ - 1}}\theta = \dfrac{\pi }{2} - {\cot ^{ - 1}}\theta \]
Here, in the question \[\theta = \cot x\]
Therefore, we get
\[{\tan ^{ - 1}}\left( {\cot x} \right) = \dfrac{\pi }{2} - {\cot ^{ - 1}}\left( {\cot x} \right)\]
So, from equation \[\left( 1 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - {{\cot }^{ - 1}}\left( {\cot x} \right)} \right)} {\text{ }}dx{\text{ }} - - - \left( 2 \right)\]
Now, we know that
\[{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta \]
From equation \[\left( 2 \right)\]
\[\theta = x\]
Therefore, \[{\cot ^{ - 1}}\left( {\cot x} \right) = x - - - \left( 3 \right)\]
Thus, using equation \[\left( 3 \right)\] in equation \[\left( 2 \right)\] we get
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)} {\text{ }}dx\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Note:
In an indefinite integral, we will put a constant of integration \[c\] not in a definite integral. Alternatively, we can solve this question by another method i.e.,
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using trigonometric identity
i.e., \[\cot x = \tan \left( {\dfrac{\pi }{2} - x} \right)\]
therefore, from the equation \[\left( 1 \right)\] we have
\[\int { - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right)dx} {\text{ }} - - - \left( 2 \right)\]
Now we know that
\[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \]
Here, \[\theta = \dfrac{\pi }{2} - x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right) = \dfrac{\pi }{2} - x\]
Therefore, from the equation \[\left( 2 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)dx} {\text{ }} - - - \left( 3 \right)\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Formulas used to solve the integral are: -
(1) \[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] where \[c\] is the constant of integration
(2) \[\int a {\text{ }}dx = ax + c\] where \[c\] is the constant of integration
Complete step by step answer:
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using inverse trigonometric identity
i.e., \[{\tan ^{ - 1}}\theta + {\cot ^{ - 1}}\theta = \dfrac{\pi }{2}\]
\[ \Rightarrow {\tan ^{ - 1}}\theta = \dfrac{\pi }{2} - {\cot ^{ - 1}}\theta \]
Here, in the question \[\theta = \cot x\]
Therefore, we get
\[{\tan ^{ - 1}}\left( {\cot x} \right) = \dfrac{\pi }{2} - {\cot ^{ - 1}}\left( {\cot x} \right)\]
So, from equation \[\left( 1 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - {{\cot }^{ - 1}}\left( {\cot x} \right)} \right)} {\text{ }}dx{\text{ }} - - - \left( 2 \right)\]
Now, we know that
\[{\cot ^{ - 1}}\left( {\cot \theta } \right) = \theta \]
From equation \[\left( 2 \right)\]
\[\theta = x\]
Therefore, \[{\cot ^{ - 1}}\left( {\cot x} \right) = x - - - \left( 3 \right)\]
Thus, using equation \[\left( 3 \right)\] in equation \[\left( 2 \right)\] we get
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)} {\text{ }}dx\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Note:
In an indefinite integral, we will put a constant of integration \[c\] not in a definite integral. Alternatively, we can solve this question by another method i.e.,
We have to find the integral of the tan inverse of cotangent of \[x\]
i.e., \[\int { - {{\tan }^{ - 1}}\left( {\cot x} \right)dx} {\text{ }} - - - \left( 1 \right)\]
Firstly, we will simplify the expression using trigonometric identity
i.e., \[\cot x = \tan \left( {\dfrac{\pi }{2} - x} \right)\]
therefore, from the equation \[\left( 1 \right)\] we have
\[\int { - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right)dx} {\text{ }} - - - \left( 2 \right)\]
Now we know that
\[{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta \]
Here, \[\theta = \dfrac{\pi }{2} - x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right) = \dfrac{\pi }{2} - x\]
Therefore, from the equation \[\left( 2 \right)\] we have
\[\int { - \left( {\dfrac{\pi }{2} - x} \right)dx} {\text{ }} - - - \left( 3 \right)\]
On multiplying with the negative sign, we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ }} - - - \left( 4 \right)\]
Now we know that
\[{\int x ^n}{\text{ }}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
And \[\int a {\text{ }}dx = ax + c\]
So, from equation \[\left( 4 \right)\] we get
\[\int {\left( {x - \dfrac{\pi }{2}} \right)} {\text{ }}dx{\text{ = }}\dfrac{{{x^2}}}{{2}} - \dfrac{\pi }{2}x + c\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

