Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find $\dfrac{dy}{dx}$ if $y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
A. $\dfrac{1}{1+{{x}^{2}}}$
B. $-\dfrac{1}{1+{{x}^{2}}}$
C. $\dfrac{2}{1+{{x}^{2}}}$
D. $\dfrac{-2}{1+{{x}^{2}}}$

Answer
VerifiedVerified
486.3k+ views
Hint:We first define the chain rule and how the differentiation of composite function works. We differentiate the main function with respect to the intermediate function and then differentiation of the intermediate function with respect to $x$. We take multiplication of these two different differentiated values.

Complete step by step answer:
We differentiate the given function $f\left( x \right)=y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{\cot }^{-1}}x$ and the other function is $h\left( x \right)=\dfrac{1+x}{1-x}$.
We have $goh\left( x \right)=g\left( \dfrac{1+x}{1-x} \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$. We take this as ours $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]$. We know $f\left( x \right)=goh\left( x \right)$.

Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$, we take differentiation of $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to the function $h\left( x \right)=\dfrac{1+x}{1-x}$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=\dfrac{1+x}{1-x}$ with respect to $x$.

We know that differentiation of $g\left( x \right)={{\cot }^{-1}}x$ is ${{g}^{'}}\left( x \right)=-\dfrac{1}{1+{{x}^{2}}}$ and differentiation of $h\left( x \right)=\dfrac{1+x}{1-x}$ is \[{{h}^{'}}\left( x \right)=\dfrac{\left( 1-x \right)+\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}=\dfrac{2}{{{\left( 1-x \right)}^{2}}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \dfrac{1+x}{1-x} \right]}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]\times \dfrac{d\left[ \dfrac{1+x}{1-x} \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left[ -\dfrac{1}{1+{{\left( \dfrac{1+x}{1-x} \right)}^{2}}} \right]\left[ \dfrac{2}{{{\left( 1-x \right)}^{2}}} \right]=\dfrac{-2}{{{\left( 1-x \right)}^{2}}+{{\left( 1+x \right)}^{2}}}=\dfrac{-2}{2\left( 1+{{x}^{2}} \right)}\].
The simplified form is \[\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]=-\dfrac{1}{1+{{x}^{2}}}\]
Therefore, differentiation of ${{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ is \[-\dfrac{1}{1+{{x}^{2}}}\].

Hence, the correct option is B.

Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.