
Find $\dfrac{dy}{dx}$ if $y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
A. $\dfrac{1}{1+{{x}^{2}}}$
B. $-\dfrac{1}{1+{{x}^{2}}}$
C. $\dfrac{2}{1+{{x}^{2}}}$
D. $\dfrac{-2}{1+{{x}^{2}}}$
Answer
486.3k+ views
Hint:We first define the chain rule and how the differentiation of composite function works. We differentiate the main function with respect to the intermediate function and then differentiation of the intermediate function with respect to $x$. We take multiplication of these two different differentiated values.
Complete step by step answer:
We differentiate the given function $f\left( x \right)=y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{\cot }^{-1}}x$ and the other function is $h\left( x \right)=\dfrac{1+x}{1-x}$.
We have $goh\left( x \right)=g\left( \dfrac{1+x}{1-x} \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$. We take this as ours $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$, we take differentiation of $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to the function $h\left( x \right)=\dfrac{1+x}{1-x}$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=\dfrac{1+x}{1-x}$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{\cot }^{-1}}x$ is ${{g}^{'}}\left( x \right)=-\dfrac{1}{1+{{x}^{2}}}$ and differentiation of $h\left( x \right)=\dfrac{1+x}{1-x}$ is \[{{h}^{'}}\left( x \right)=\dfrac{\left( 1-x \right)+\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}=\dfrac{2}{{{\left( 1-x \right)}^{2}}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \dfrac{1+x}{1-x} \right]}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]\times \dfrac{d\left[ \dfrac{1+x}{1-x} \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left[ -\dfrac{1}{1+{{\left( \dfrac{1+x}{1-x} \right)}^{2}}} \right]\left[ \dfrac{2}{{{\left( 1-x \right)}^{2}}} \right]=\dfrac{-2}{{{\left( 1-x \right)}^{2}}+{{\left( 1+x \right)}^{2}}}=\dfrac{-2}{2\left( 1+{{x}^{2}} \right)}\].
The simplified form is \[\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]=-\dfrac{1}{1+{{x}^{2}}}\]
Therefore, differentiation of ${{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ is \[-\dfrac{1}{1+{{x}^{2}}}\].
Hence, the correct option is B.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We differentiate the given function $f\left( x \right)=y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{\cot }^{-1}}x$ and the other function is $h\left( x \right)=\dfrac{1+x}{1-x}$.
We have $goh\left( x \right)=g\left( \dfrac{1+x}{1-x} \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$. We take this as ours $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$, we take differentiation of $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to the function $h\left( x \right)=\dfrac{1+x}{1-x}$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=\dfrac{1+x}{1-x}$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{\cot }^{-1}}x$ is ${{g}^{'}}\left( x \right)=-\dfrac{1}{1+{{x}^{2}}}$ and differentiation of $h\left( x \right)=\dfrac{1+x}{1-x}$ is \[{{h}^{'}}\left( x \right)=\dfrac{\left( 1-x \right)+\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}=\dfrac{2}{{{\left( 1-x \right)}^{2}}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \dfrac{1+x}{1-x} \right]}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]\times \dfrac{d\left[ \dfrac{1+x}{1-x} \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left[ -\dfrac{1}{1+{{\left( \dfrac{1+x}{1-x} \right)}^{2}}} \right]\left[ \dfrac{2}{{{\left( 1-x \right)}^{2}}} \right]=\dfrac{-2}{{{\left( 1-x \right)}^{2}}+{{\left( 1+x \right)}^{2}}}=\dfrac{-2}{2\left( 1+{{x}^{2}} \right)}\].
The simplified form is \[\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]=-\dfrac{1}{1+{{x}^{2}}}\]
Therefore, differentiation of ${{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ is \[-\dfrac{1}{1+{{x}^{2}}}\].
Hence, the correct option is B.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What does the Hymn Ek ONKAR SATNAM KARTA PURAKH NIRBHAU class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Explain sex determination in humans with the help of class 12 biology CBSE

One megawatt is equal to how many units of electri class 12 physics CBSE

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

