
Find $\dfrac{dy}{dx}$ if $y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
A. $\dfrac{1}{1+{{x}^{2}}}$
B. $-\dfrac{1}{1+{{x}^{2}}}$
C. $\dfrac{2}{1+{{x}^{2}}}$
D. $\dfrac{-2}{1+{{x}^{2}}}$
Answer
511.8k+ views
Hint:We first define the chain rule and how the differentiation of composite function works. We differentiate the main function with respect to the intermediate function and then differentiation of the intermediate function with respect to $x$. We take multiplication of these two different differentiated values.
Complete step by step answer:
We differentiate the given function $f\left( x \right)=y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{\cot }^{-1}}x$ and the other function is $h\left( x \right)=\dfrac{1+x}{1-x}$.
We have $goh\left( x \right)=g\left( \dfrac{1+x}{1-x} \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$. We take this as ours $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$, we take differentiation of $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to the function $h\left( x \right)=\dfrac{1+x}{1-x}$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=\dfrac{1+x}{1-x}$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{\cot }^{-1}}x$ is ${{g}^{'}}\left( x \right)=-\dfrac{1}{1+{{x}^{2}}}$ and differentiation of $h\left( x \right)=\dfrac{1+x}{1-x}$ is \[{{h}^{'}}\left( x \right)=\dfrac{\left( 1-x \right)+\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}=\dfrac{2}{{{\left( 1-x \right)}^{2}}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \dfrac{1+x}{1-x} \right]}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]\times \dfrac{d\left[ \dfrac{1+x}{1-x} \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left[ -\dfrac{1}{1+{{\left( \dfrac{1+x}{1-x} \right)}^{2}}} \right]\left[ \dfrac{2}{{{\left( 1-x \right)}^{2}}} \right]=\dfrac{-2}{{{\left( 1-x \right)}^{2}}+{{\left( 1+x \right)}^{2}}}=\dfrac{-2}{2\left( 1+{{x}^{2}} \right)}\].
The simplified form is \[\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]=-\dfrac{1}{1+{{x}^{2}}}\]
Therefore, differentiation of ${{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ is \[-\dfrac{1}{1+{{x}^{2}}}\].
Hence, the correct option is B.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We differentiate the given function $f\left( x \right)=y={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{\cot }^{-1}}x$ and the other function is $h\left( x \right)=\dfrac{1+x}{1-x}$.
We have $goh\left( x \right)=g\left( \dfrac{1+x}{1-x} \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$. We take this as ours $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$, we take differentiation of $f\left( x \right)={{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ with respect to the function $h\left( x \right)=\dfrac{1+x}{1-x}$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=\dfrac{1+x}{1-x}$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{\cot }^{-1}}x$ is ${{g}^{'}}\left( x \right)=-\dfrac{1}{1+{{x}^{2}}}$ and differentiation of $h\left( x \right)=\dfrac{1+x}{1-x}$ is \[{{h}^{'}}\left( x \right)=\dfrac{\left( 1-x \right)+\left( 1+x \right)}{{{\left( 1-x \right)}^{2}}}=\dfrac{2}{{{\left( 1-x \right)}^{2}}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \dfrac{1+x}{1-x} \right]}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]\times \dfrac{d\left[ \dfrac{1+x}{1-x} \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\left[ -\dfrac{1}{1+{{\left( \dfrac{1+x}{1-x} \right)}^{2}}} \right]\left[ \dfrac{2}{{{\left( 1-x \right)}^{2}}} \right]=\dfrac{-2}{{{\left( 1-x \right)}^{2}}+{{\left( 1+x \right)}^{2}}}=\dfrac{-2}{2\left( 1+{{x}^{2}} \right)}\].
The simplified form is \[\dfrac{d}{dx}\left[ {{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right) \right]=-\dfrac{1}{1+{{x}^{2}}}\]
Therefore, differentiation of ${{\cot }^{-1}}\left( \dfrac{1+x}{1-x} \right)$ is \[-\dfrac{1}{1+{{x}^{2}}}\].
Hence, the correct option is B.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

