
Find $ \dfrac{{dy}}{{dx}} $ , if $ y = {\sin ^{ - 1}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) $ .
Answer
566.7k+ views
Hint: Use the inverse trigonometric differentiation formulas to solve the given question. Also differentiate the angle of the trigonometric property given.
Complete step-by-step answer:
As we know that is $ {\sin ^{ - 1}}x = y $ , then it is also true that $ \sin y = x $ . So, simplify the given expression with this rule.
Now simplify the given trigonometric identity as given below:
$
y = {\sin ^{ - 1}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) \\
\sin y = \dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5} \\
$
The chain rule of differentiation says that is a function $ h\left( x \right) $ can be written as $ h\left( x \right) = f\left( {g\left( x \right)} \right) $ , then $ \dfrac{d}{{dx}}\left( {h\left( x \right)} \right) $ will be equal to $ f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) $ .
Now differentiate both the sides with respect to $ x $ using the chain rule:
$
\dfrac{d}{{dx}}\left( {\sin y} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) \\
\cos y\dfrac{{dy}}{{dx}} = \dfrac{6}{5}\dfrac{d}{{dx}}\left( x \right) - \dfrac{4}{5}\dfrac{d}{{dx}}\left( {\sqrt {1 - 4{x^2}} } \right) \\
\sqrt {\left( {1 - {{\sin }^2}y} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{1}{{2\sqrt {1 - 4{x^2}} }} \times \dfrac{d}{{dx}}\left( {1 - 4{x^2}} \right) \\
\sqrt {\left( {1 - {{\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right)}^2}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{{ - 8x}}{{2\sqrt {1 - 4{x^2}} }} \\
$
Further simplify,
$
\sqrt {\left( {1 - {{\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right)}^2}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{{ - 8x}}{{2\sqrt {1 - 4{x^2}} }} \\
\sqrt {\left( {1 - \dfrac{{16 - 28{x^2} - 48x\sqrt {1 - 4{x^2}} }}{{25}}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{1}{5}\left( {6 + \dfrac{{16x}}{{\sqrt {1 - 4{x^2}} }}} \right) \\
\sqrt {\left( {\dfrac{{28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9}}{{25}}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{1}{5}\left( {\dfrac{{6\sqrt {1 - 4{x^2}} + 16x}}{{\sqrt {1 - 4{x^2}} }}} \right) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} \\
$
Hence the value of $ \dfrac{{dy}}{{dx}} $ is equal to $ \dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} $ for the given question.
So, the correct answer is “$ \dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} $ ”.
Note: Use the chain rule to differentiate the term $ \sin y $ with respect to the variable $ x $ as the variable $ y $ is also a function of $ x $ itself. The trigonometric identity $ {\sin ^2}x + {\cos ^2}x = 1 $ holds true. The chain rule of differentiation says that is a function $ h\left( x \right) $ can be written as $ h\left( x \right) = f\left( {g\left( x \right)} \right) $ , then $ \dfrac{d}{{dx}}\left( {h\left( x \right)} \right) $ will be equal to $ f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) $ .
Complete step-by-step answer:
As we know that is $ {\sin ^{ - 1}}x = y $ , then it is also true that $ \sin y = x $ . So, simplify the given expression with this rule.
Now simplify the given trigonometric identity as given below:
$
y = {\sin ^{ - 1}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) \\
\sin y = \dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5} \\
$
The chain rule of differentiation says that is a function $ h\left( x \right) $ can be written as $ h\left( x \right) = f\left( {g\left( x \right)} \right) $ , then $ \dfrac{d}{{dx}}\left( {h\left( x \right)} \right) $ will be equal to $ f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) $ .
Now differentiate both the sides with respect to $ x $ using the chain rule:
$
\dfrac{d}{{dx}}\left( {\sin y} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right) \\
\cos y\dfrac{{dy}}{{dx}} = \dfrac{6}{5}\dfrac{d}{{dx}}\left( x \right) - \dfrac{4}{5}\dfrac{d}{{dx}}\left( {\sqrt {1 - 4{x^2}} } \right) \\
\sqrt {\left( {1 - {{\sin }^2}y} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{1}{{2\sqrt {1 - 4{x^2}} }} \times \dfrac{d}{{dx}}\left( {1 - 4{x^2}} \right) \\
\sqrt {\left( {1 - {{\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right)}^2}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{{ - 8x}}{{2\sqrt {1 - 4{x^2}} }} \\
$
Further simplify,
$
\sqrt {\left( {1 - {{\left( {\dfrac{{6x - 4\sqrt {1 - 4{x^2}} }}{5}} \right)}^2}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{6}{5} - \dfrac{4}{5} \times \dfrac{{ - 8x}}{{2\sqrt {1 - 4{x^2}} }} \\
\sqrt {\left( {1 - \dfrac{{16 - 28{x^2} - 48x\sqrt {1 - 4{x^2}} }}{{25}}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{1}{5}\left( {6 + \dfrac{{16x}}{{\sqrt {1 - 4{x^2}} }}} \right) \\
\sqrt {\left( {\dfrac{{28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9}}{{25}}} \right)} \dfrac{{dy}}{{dx}} = \dfrac{1}{5}\left( {\dfrac{{6\sqrt {1 - 4{x^2}} + 16x}}{{\sqrt {1 - 4{x^2}} }}} \right) \\
\dfrac{{dy}}{{dx}} = \dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} \\
$
Hence the value of $ \dfrac{{dy}}{{dx}} $ is equal to $ \dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} $ for the given question.
So, the correct answer is “$ \dfrac{{\left( {6\sqrt {1 - 4{x^2}} + 16x} \right)}}{{\sqrt {1 - 4{x^2}} \left( {\sqrt {28{x^2} + 48x\sqrt {1 - 4{x^2}} + 9} } \right)}} $ ”.
Note: Use the chain rule to differentiate the term $ \sin y $ with respect to the variable $ x $ as the variable $ y $ is also a function of $ x $ itself. The trigonometric identity $ {\sin ^2}x + {\cos ^2}x = 1 $ holds true. The chain rule of differentiation says that is a function $ h\left( x \right) $ can be written as $ h\left( x \right) = f\left( {g\left( x \right)} \right) $ , then $ \dfrac{d}{{dx}}\left( {h\left( x \right)} \right) $ will be equal to $ f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right) $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

