
Find $ \dfrac{d}{{dx}}[{e^{( - a{x^2})}}\log \sin x = $
\[\left( 1 \right)\]${e^{( - a{x^2})}}[\cot x + 2ax \times \log \sin x]$
\[\left( 2 \right)\]${e^{( - a{x^2})}}[\cot x + ax \times \log \sin x]$
\[\left( 3 \right)\]${e^{( - a{x^2})}}[\cot x - 2ax \times \log \sin x]$
\[\left( 4 \right)\]\[none{\text{ }}of{\text{ }}these\]
Answer
506.1k+ views
Hint: We have to find the derivative of $[{e^{( - a{x^2})}}\log \sin x]$ with respect to. We solve this using chain rule and product rule of differentiation . Also using various basic derivative formulas of trigonometric functions , derivatives of exponential functions and derivatives of logarithmic functions . We firstly derivate the function with respect to x by applying the product rule and then the chain rule.
Complete step-by-step answer:
Derivative of sum of two function is equal to sum of the derivatives of the functions :
\[{\text{ }}\dfrac{{d\left[ {f\left( x \right){\text{ }} + {\text{ }}g\left( x \right){\text{ }}} \right]}}{{dx}} = \] \[\dfrac{{d{\text{ }}f\left( x \right)}}{{dx}}{\text{ }} + \dfrac{{d{\text{ }}g\left( x \right)}}{{dx}}\]
Derivative of product of two function is difference of the derivatives of the functions :
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} - {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = \] \[\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}{\text{ }} - {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Derivative of product of two function is given by the following product rule :
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}\] \[ = {\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}{\text{ }} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Derivative of quotient of two function is given by the following quotient rule :
\[\dfrac{{d\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right]}}{{dx}}{\text{ }} = \] $\dfrac{{[\dfrac{{d[f(x)]}}{{dx}} \times g(x) - f(x) \times \dfrac{{d[g(x)]}}{{dx}}]}}{{{{[g(x)]}^2}}}$
Given : $\dfrac{d}{{dx}}[{e^{( - a{x^2})}}logsinx]$
Let us consider $y = [{e^{( - a{x^2})}}logsinx]$
Now we have to derivative \[y\]with respect to
Using the formula of product rule
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = \] \[{\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx{\text{ }}}} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Differentiate \[y\]with respect to, we get
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}[{e^{( - a{x^2})}}] \times \log \sin x + \dfrac{d}{{dx}}[\log \sin x] \times [{e^{( - a{x^2})}}]$
Using chain rule and derivatives of functions
We know ,
( Derivative of ${e^x} = {e^x}$)
( derivative of ${x^n} = n \times {x^{(n - 1)}}$)
( derivative of \[log{\text{ }}x{\text{ }} = {\text{ }}\dfrac{1}{x}\])
( Derivative of\[sin{\text{ }}x{\text{ }} = {\text{ }}cos{\text{ }}x\])
Using these derivatives , we get
\[{\text{ }}\dfrac{{dy}}{{dx}} = \] $[{e^{( - a{x^2})}} \times ( - 2ax)] \times \log \sin x + [\dfrac{{\cos x}}{{\sin x}}] \times [{e^{( - a{x^2})}}]$
Also , we know \[cot{\text{ }}x{\text{ }} = {\text{ }}\dfrac{{cos{\text{ }}x}}{{sin{\text{ }}x}}\]
So,
\[\dfrac{{dy}}{{dx}}{\text{ }} = \] $[{e^{( - a{x^2})}}( - 2ax)] \times \log \sin x + [\cot x][{e^{( - a{x^2})}}]$
Taking ${e^{( - a{x^2})}}$common , we get
\[\dfrac{{dy}}{{dx}}{\text{ }} = \] $[{e^{( - a{x^2})}}] \times [\cot x - 2ax \times \log \sin x]$
Thus , the correct option is \[\left( 3 \right)\]
So, the correct answer is “Option 3”.
Note: We differentiated $y$ with respect to to find\[\dfrac{{dy}}{{dx}}\]. We know the differentiation of trigonometric function :
$\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x$
\[\dfrac{{d\left[ {sin{\text{ }}x} \right]}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x\]
$d[{x^n}] = n{x^{(n - 1)}}$
$d[\tan x] = se{c^2}x$
We use the derivative according to the given problem .
Complete step-by-step answer:
Derivative of sum of two function is equal to sum of the derivatives of the functions :
\[{\text{ }}\dfrac{{d\left[ {f\left( x \right){\text{ }} + {\text{ }}g\left( x \right){\text{ }}} \right]}}{{dx}} = \] \[\dfrac{{d{\text{ }}f\left( x \right)}}{{dx}}{\text{ }} + \dfrac{{d{\text{ }}g\left( x \right)}}{{dx}}\]
Derivative of product of two function is difference of the derivatives of the functions :
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} - {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = \] \[\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}{\text{ }} - {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Derivative of product of two function is given by the following product rule :
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}\] \[ = {\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}{\text{ }} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Derivative of quotient of two function is given by the following quotient rule :
\[\dfrac{{d\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right]}}{{dx}}{\text{ }} = \] $\dfrac{{[\dfrac{{d[f(x)]}}{{dx}} \times g(x) - f(x) \times \dfrac{{d[g(x)]}}{{dx}}]}}{{{{[g(x)]}^2}}}$
Given : $\dfrac{d}{{dx}}[{e^{( - a{x^2})}}logsinx]$
Let us consider $y = [{e^{( - a{x^2})}}logsinx]$
Now we have to derivative \[y\]with respect to
Using the formula of product rule
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = \] \[{\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx{\text{ }}}} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Differentiate \[y\]with respect to, we get
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}[{e^{( - a{x^2})}}] \times \log \sin x + \dfrac{d}{{dx}}[\log \sin x] \times [{e^{( - a{x^2})}}]$
Using chain rule and derivatives of functions
We know ,
( Derivative of ${e^x} = {e^x}$)
( derivative of ${x^n} = n \times {x^{(n - 1)}}$)
( derivative of \[log{\text{ }}x{\text{ }} = {\text{ }}\dfrac{1}{x}\])
( Derivative of\[sin{\text{ }}x{\text{ }} = {\text{ }}cos{\text{ }}x\])
Using these derivatives , we get
\[{\text{ }}\dfrac{{dy}}{{dx}} = \] $[{e^{( - a{x^2})}} \times ( - 2ax)] \times \log \sin x + [\dfrac{{\cos x}}{{\sin x}}] \times [{e^{( - a{x^2})}}]$
Also , we know \[cot{\text{ }}x{\text{ }} = {\text{ }}\dfrac{{cos{\text{ }}x}}{{sin{\text{ }}x}}\]
So,
\[\dfrac{{dy}}{{dx}}{\text{ }} = \] $[{e^{( - a{x^2})}}( - 2ax)] \times \log \sin x + [\cot x][{e^{( - a{x^2})}}]$
Taking ${e^{( - a{x^2})}}$common , we get
\[\dfrac{{dy}}{{dx}}{\text{ }} = \] $[{e^{( - a{x^2})}}] \times [\cot x - 2ax \times \log \sin x]$
Thus , the correct option is \[\left( 3 \right)\]
So, the correct answer is “Option 3”.
Note: We differentiated $y$ with respect to to find\[\dfrac{{dy}}{{dx}}\]. We know the differentiation of trigonometric function :
$\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x$
\[\dfrac{{d\left[ {sin{\text{ }}x} \right]}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x\]
$d[{x^n}] = n{x^{(n - 1)}}$
$d[\tan x] = se{c^2}x$
We use the derivative according to the given problem .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

