
Find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
\[y=\dfrac{1+x}{1-x}\]
Answer
607.2k+ views
Hint: If u and v are two differentiable functions of x then \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\times \dfrac{du}{dx}-u\times \dfrac{dv}{dx}}{{{v}^{2}}}\]and this formula is called quotient rule. In this problem u and v are two differentiable functions of x so apply the quotient rule. Here they asked us to find the \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]so we have to apply the quotient rule two times then we will get the required answer.
Complete step-by-step answer:
Given that \[y=\dfrac{1+x}{1-x}\]
We have to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
We know that the formula of \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)\]is given by \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\times \dfrac{du}{dx}-u\times \dfrac{dv}{dx}}{{{v}^{2}}}\]
Applying the above formula we will get,
\[\dfrac{dy}{dx}=\dfrac{(1-x)\left( 1 \right)-\left( 1+x \right)\left( -1 \right)}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . .(1)
\[\dfrac{dy}{dx}=\dfrac{1-x+1+x}{{{(1-x)}^{2}}}\]
\[\dfrac{dy}{dx}=\dfrac{2}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
Now again apply the derivative then we will get the double derivative of it.
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{2}{{{(1-x)}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{(1-x)}^{2}}\times 0-2\times 2\times (1-x)\left( -1 \right)}{{{(1-x)}^{4}}}\]. . . . . . . . . . . . (4)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\times 2\times (1-x)}{{{(1-x)}^{4}}}\] . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{4}{{{(1-x)}^{3}}}\]
Note:The formula for \[\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}+\dfrac{dv}{dx}\]. So the derivative of \[1+x\]is 1and this formula is known as sum rule. The formula for derivative of \[{{u}^{n}}=n{{u}^{n-1}}\]where n is any integer so the derivative of \[{{(1-x)}^{2}}\]is \[2\times (1-x)\left( -1 \right)\]. Carefully do the basic mathematical operations like addition subtraction then we will get the required answer.
Complete step-by-step answer:
Given that \[y=\dfrac{1+x}{1-x}\]
We have to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
We know that the formula of \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)\]is given by \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\times \dfrac{du}{dx}-u\times \dfrac{dv}{dx}}{{{v}^{2}}}\]
Applying the above formula we will get,
\[\dfrac{dy}{dx}=\dfrac{(1-x)\left( 1 \right)-\left( 1+x \right)\left( -1 \right)}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . .(1)
\[\dfrac{dy}{dx}=\dfrac{1-x+1+x}{{{(1-x)}^{2}}}\]
\[\dfrac{dy}{dx}=\dfrac{2}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
Now again apply the derivative then we will get the double derivative of it.
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{2}{{{(1-x)}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{(1-x)}^{2}}\times 0-2\times 2\times (1-x)\left( -1 \right)}{{{(1-x)}^{4}}}\]. . . . . . . . . . . . (4)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\times 2\times (1-x)}{{{(1-x)}^{4}}}\] . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{4}{{{(1-x)}^{3}}}\]
Note:The formula for \[\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}+\dfrac{dv}{dx}\]. So the derivative of \[1+x\]is 1and this formula is known as sum rule. The formula for derivative of \[{{u}^{n}}=n{{u}^{n-1}}\]where n is any integer so the derivative of \[{{(1-x)}^{2}}\]is \[2\times (1-x)\left( -1 \right)\]. Carefully do the basic mathematical operations like addition subtraction then we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

