
Find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
\[y=\dfrac{1+x}{1-x}\]
Answer
509.7k+ views
Hint: If u and v are two differentiable functions of x then \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\times \dfrac{du}{dx}-u\times \dfrac{dv}{dx}}{{{v}^{2}}}\]and this formula is called quotient rule. In this problem u and v are two differentiable functions of x so apply the quotient rule. Here they asked us to find the \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]so we have to apply the quotient rule two times then we will get the required answer.
Complete step-by-step answer:
Given that \[y=\dfrac{1+x}{1-x}\]
We have to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
We know that the formula of \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)\]is given by \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\times \dfrac{du}{dx}-u\times \dfrac{dv}{dx}}{{{v}^{2}}}\]
Applying the above formula we will get,
\[\dfrac{dy}{dx}=\dfrac{(1-x)\left( 1 \right)-\left( 1+x \right)\left( -1 \right)}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . .(1)
\[\dfrac{dy}{dx}=\dfrac{1-x+1+x}{{{(1-x)}^{2}}}\]
\[\dfrac{dy}{dx}=\dfrac{2}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
Now again apply the derivative then we will get the double derivative of it.
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{2}{{{(1-x)}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{(1-x)}^{2}}\times 0-2\times 2\times (1-x)\left( -1 \right)}{{{(1-x)}^{4}}}\]. . . . . . . . . . . . (4)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\times 2\times (1-x)}{{{(1-x)}^{4}}}\] . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{4}{{{(1-x)}^{3}}}\]
Note:The formula for \[\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}+\dfrac{dv}{dx}\]. So the derivative of \[1+x\]is 1and this formula is known as sum rule. The formula for derivative of \[{{u}^{n}}=n{{u}^{n-1}}\]where n is any integer so the derivative of \[{{(1-x)}^{2}}\]is \[2\times (1-x)\left( -1 \right)\]. Carefully do the basic mathematical operations like addition subtraction then we will get the required answer.
Complete step-by-step answer:
Given that \[y=\dfrac{1+x}{1-x}\]
We have to find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]
We know that the formula of \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)\]is given by \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\times \dfrac{du}{dx}-u\times \dfrac{dv}{dx}}{{{v}^{2}}}\]
Applying the above formula we will get,
\[\dfrac{dy}{dx}=\dfrac{(1-x)\left( 1 \right)-\left( 1+x \right)\left( -1 \right)}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . .(1)
\[\dfrac{dy}{dx}=\dfrac{1-x+1+x}{{{(1-x)}^{2}}}\]
\[\dfrac{dy}{dx}=\dfrac{2}{{{(1-x)}^{2}}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
Now again apply the derivative then we will get the double derivative of it.
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{2}{{{(1-x)}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{(1-x)}^{2}}\times 0-2\times 2\times (1-x)\left( -1 \right)}{{{(1-x)}^{4}}}\]. . . . . . . . . . . . (4)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\times 2\times (1-x)}{{{(1-x)}^{4}}}\] . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{4}{{{(1-x)}^{3}}}\]
Note:The formula for \[\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}+\dfrac{dv}{dx}\]. So the derivative of \[1+x\]is 1and this formula is known as sum rule. The formula for derivative of \[{{u}^{n}}=n{{u}^{n-1}}\]where n is any integer so the derivative of \[{{(1-x)}^{2}}\]is \[2\times (1-x)\left( -1 \right)\]. Carefully do the basic mathematical operations like addition subtraction then we will get the required answer.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
