
Find derivative of $y = {x^x}.{e^{2x + 5}}$.
Answer
567.3k+ views
Hint: Differentiation- It is the action of computing a derivative.
The derivative of a function \[y = f\left( x \right)\] of a variable x is a measure of the rate at which the value y of the function changes with respect to the change of the variable x.
It is denoted by \[dy/dx.\]
Some formulae of finding differentiation
$\dfrac{d}{{dx}}(ax) = a$
$\dfrac{d}{{dx}}(x) = 1$
$\dfrac{d}{{dx}}(c) = 0$ \[\left[ {c = constant} \right]\]
$\dfrac{d}{{dx}}({x^n}) = {x^{n - 1}}$
$\dfrac{d}{{dx}}({e^n}) = {e^x}$
$\dfrac{d}{{dx}}(ax \pm b) = \dfrac{d}{{dx}}(ax) \pm \dfrac{d}{{dx}}(b)$
$\dfrac{d}{{dx}}(\log x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}(\sin x) = \cos x$
$\dfrac{d}{{dx}}(cosx) = - \sin x$
$\dfrac{d}{{dx}}(\tan x) = \sec {x^2}$
$\dfrac{d}{{dx}}(\sec x) = \sec x\tan x$
$\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x$
$\dfrac{d}{{dx}}(\cos ecx) = \cos ecx\cot x$
Complete step by step solution:
$y = {x^x}{e^{2x + 5}}$
Taking log both the sides
$\log y = \log ({x^x}{e^{2x + 5}})$
or
$\log y = \log {x^x} + \log {e^{2x + 5}}$
Differentiating both the sides
$\dfrac{d}{{dx}}(\log y) = \dfrac{d}{{dx}}(\log {x^x}) + \dfrac{d}{{dx}}[\log {e^{2x + 5}}]$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x\log x) + \dfrac{d}{{dx}}[(2x + 5){\log _e}e]$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \log x + x\dfrac{d}{{dx}}(\log x) + \dfrac{d}{{dx}}(2x + 5)$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \log x + x\dfrac{d}{{dx}}(\log x) + \dfrac{d}{{dx}}(2x + 5)$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = (1)\log x + x \times \left( {\dfrac{1}{x}} \right) + 2$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x + 1 + 2$
$\dfrac{{dy}}{{dx}} = (\log x + 3) \times y$
or $\dfrac{{dy}}{{dx}} = [\log x + 3][{x^x}{e^{2x + 5}}]$
So derivative of $y = {e^x}{e^{2x + 5}}$ is $[\log x + 3]({x^x}{e^{2x + 5}})$.
Note: 1.Students usually forget to use u.v formula i.e. differentiation by parts for finding derivation of two functions which are in multiplication with each other.
U.v formula \[\dfrac{{d(uv)}}{{dx}} = \dfrac{{v.d\left( u \right)}}{{dx}} + \dfrac{{u.d\left( v \right)}}{{dx}}\]
(differentiation by parts)
One function will remain constant and the 2nd function to be differentiated.
Then the 2nd function will remain constant and the 1st one is to be differentiated.
The derivative of a function \[y = f\left( x \right)\] of a variable x is a measure of the rate at which the value y of the function changes with respect to the change of the variable x.
It is denoted by \[dy/dx.\]
Some formulae of finding differentiation
$\dfrac{d}{{dx}}(ax) = a$
$\dfrac{d}{{dx}}(x) = 1$
$\dfrac{d}{{dx}}(c) = 0$ \[\left[ {c = constant} \right]\]
$\dfrac{d}{{dx}}({x^n}) = {x^{n - 1}}$
$\dfrac{d}{{dx}}({e^n}) = {e^x}$
$\dfrac{d}{{dx}}(ax \pm b) = \dfrac{d}{{dx}}(ax) \pm \dfrac{d}{{dx}}(b)$
$\dfrac{d}{{dx}}(\log x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}(\sin x) = \cos x$
$\dfrac{d}{{dx}}(cosx) = - \sin x$
$\dfrac{d}{{dx}}(\tan x) = \sec {x^2}$
$\dfrac{d}{{dx}}(\sec x) = \sec x\tan x$
$\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x$
$\dfrac{d}{{dx}}(\cos ecx) = \cos ecx\cot x$
Complete step by step solution:
$y = {x^x}{e^{2x + 5}}$
Taking log both the sides
$\log y = \log ({x^x}{e^{2x + 5}})$
or
$\log y = \log {x^x} + \log {e^{2x + 5}}$
Differentiating both the sides
$\dfrac{d}{{dx}}(\log y) = \dfrac{d}{{dx}}(\log {x^x}) + \dfrac{d}{{dx}}[\log {e^{2x + 5}}]$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x\log x) + \dfrac{d}{{dx}}[(2x + 5){\log _e}e]$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \log x + x\dfrac{d}{{dx}}(\log x) + \dfrac{d}{{dx}}(2x + 5)$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x) \times \log x + x\dfrac{d}{{dx}}(\log x) + \dfrac{d}{{dx}}(2x + 5)$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = (1)\log x + x \times \left( {\dfrac{1}{x}} \right) + 2$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x + 1 + 2$
$\dfrac{{dy}}{{dx}} = (\log x + 3) \times y$
or $\dfrac{{dy}}{{dx}} = [\log x + 3][{x^x}{e^{2x + 5}}]$
So derivative of $y = {e^x}{e^{2x + 5}}$ is $[\log x + 3]({x^x}{e^{2x + 5}})$.
Note: 1.Students usually forget to use u.v formula i.e. differentiation by parts for finding derivation of two functions which are in multiplication with each other.
U.v formula \[\dfrac{{d(uv)}}{{dx}} = \dfrac{{v.d\left( u \right)}}{{dx}} + \dfrac{{u.d\left( v \right)}}{{dx}}\]
(differentiation by parts)
One function will remain constant and the 2nd function to be differentiated.
Then the 2nd function will remain constant and the 1st one is to be differentiated.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

