
Find a vector $\overrightarrow{p}$ such that it is perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$, and $\overrightarrow{p}.\overrightarrow{c}=18$, where $\overrightarrow{a}=\hat{i}+4\hat{j}+2\hat{k}$, $\overrightarrow{b}=3\hat{i}-2\hat{j}+7\hat{k}$ and $\overrightarrow{c}=2\hat{i}-\hat{j}+4\hat{k}$.
Answer
555k+ views
Hint: We solve this question by finding the vector perpendicular to given two vectors using the formula $\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$. Then we multiply the obtained vector with some constant and consider it as $\overrightarrow{p}$. Then we find the dot product of $\overrightarrow{p}$ and $\overrightarrow{c}$ using the formula for dot product\[~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]. Then we can find the value of the constant and substitute it in the value vector $\overrightarrow{p}$ to find the value of the vector $\overrightarrow{p}$.
Complete step by step answer:
For solving this problem, we need to go through the concept of dot product of two vectors.
Dot product of vectors \[\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] can be given as,
\[~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
Any vector perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$ can be written in the form of $k\left( \overrightarrow{a}\times \overrightarrow{b} \right)$, where k is a constant. While $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ is the cross product of vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ can be given as,
$\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$
We are given that a vector $\overrightarrow{p}$ is perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$, and $\overrightarrow{p}.\overrightarrow{c}=18$.
As $\overrightarrow{p}$ is perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$, we can write $\overrightarrow{p}$ as $l\left( \overrightarrow{a}\times \overrightarrow{b} \right)$, where l is some constant.
First let us calculate the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$.
$\begin{align}
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 4 & 2 \\
3 & -2 & 7 \\
\end{matrix} \right| \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\hat{i}\left| \begin{matrix}
4 & 2 \\
-2 & 7 \\
\end{matrix} \right|-\hat{j}\left| \begin{matrix}
1 & 2 \\
3 & 7 \\
\end{matrix} \right|+\hat{k}\left| \begin{matrix}
1 & 4 \\
3 & -2 \\
\end{matrix} \right| \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\hat{i}\left( 28+4 \right)-\hat{j}\left( 7-6 \right)+\hat{k}\left( -2-12 \right) \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=32\hat{i}-\hat{j}-14\hat{k} \\
\end{align}$
As $\overrightarrow{p}$ is in the form of $l\left( \overrightarrow{a}\times \overrightarrow{b} \right)$, we can write $\overrightarrow{p}$ as
$\begin{align}
& \Rightarrow \overrightarrow{p}=l\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \Rightarrow \overrightarrow{p}=l\left( 32\hat{i}-\hat{j}-14\hat{k} \right) \\
& \Rightarrow \overrightarrow{p}=32l\hat{i}-l\hat{j}-14l\hat{k} \\
\end{align}$
We are given that $\overrightarrow{p}.\overrightarrow{c}=18$.
So, by using the above formula of dot product of \[\overrightarrow{p}\] and $\overrightarrow{c}$, we get
\[\begin{align}
& \Rightarrow \overrightarrow{p}.\overrightarrow{c}=18 \\
& \Rightarrow ~\left( 32l \right)\left( 2 \right)+\left( -l \right)\left( -1 \right)+\left( -14l \right)\left( 4 \right)=18 \\
& \Rightarrow ~64l+l-56l=18 \\
& \Rightarrow ~9l=18 \\
& \Rightarrow ~l=\dfrac{18}{9} \\
& \Rightarrow ~l=2 \\
\end{align}\]
Then by substituting the value of $l$ in $\overrightarrow{p}$, we get
$\begin{align}
& \Rightarrow \overrightarrow{p}=32\left( 2 \right)\hat{i}-\left( 2 \right)\hat{j}-14\left( 2 \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k} \\
\end{align}$
So, the value of vector $\overrightarrow{p}$ is $\overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k}$.
Hence the answer is $\overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k}$.
Note: The major mistake that one makes while solving this problem is exchanging the formulas of cross product and dot product for one another like considering $\overrightarrow{a}.\overrightarrow{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$ and \[~\overrightarrow{a}\times \overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\], which is wrong. So, one needs to remember the formulas for dot product and cross product and use them correctly.
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$. Then we multiply the obtained vector with some constant and consider it as $\overrightarrow{p}$. Then we find the dot product of $\overrightarrow{p}$ and $\overrightarrow{c}$ using the formula for dot product\[~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]. Then we can find the value of the constant and substitute it in the value vector $\overrightarrow{p}$ to find the value of the vector $\overrightarrow{p}$.
Complete step by step answer:
For solving this problem, we need to go through the concept of dot product of two vectors.
Dot product of vectors \[\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] can be given as,
\[~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
Any vector perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$ can be written in the form of $k\left( \overrightarrow{a}\times \overrightarrow{b} \right)$, where k is a constant. While $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ is the cross product of vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ can be given as,
$\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$
We are given that a vector $\overrightarrow{p}$ is perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$, and $\overrightarrow{p}.\overrightarrow{c}=18$.
As $\overrightarrow{p}$ is perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$, we can write $\overrightarrow{p}$ as $l\left( \overrightarrow{a}\times \overrightarrow{b} \right)$, where l is some constant.
First let us calculate the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$.
$\begin{align}
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 4 & 2 \\
3 & -2 & 7 \\
\end{matrix} \right| \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\hat{i}\left| \begin{matrix}
4 & 2 \\
-2 & 7 \\
\end{matrix} \right|-\hat{j}\left| \begin{matrix}
1 & 2 \\
3 & 7 \\
\end{matrix} \right|+\hat{k}\left| \begin{matrix}
1 & 4 \\
3 & -2 \\
\end{matrix} \right| \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\hat{i}\left( 28+4 \right)-\hat{j}\left( 7-6 \right)+\hat{k}\left( -2-12 \right) \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=32\hat{i}-\hat{j}-14\hat{k} \\
\end{align}$
As $\overrightarrow{p}$ is in the form of $l\left( \overrightarrow{a}\times \overrightarrow{b} \right)$, we can write $\overrightarrow{p}$ as
$\begin{align}
& \Rightarrow \overrightarrow{p}=l\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \Rightarrow \overrightarrow{p}=l\left( 32\hat{i}-\hat{j}-14\hat{k} \right) \\
& \Rightarrow \overrightarrow{p}=32l\hat{i}-l\hat{j}-14l\hat{k} \\
\end{align}$
We are given that $\overrightarrow{p}.\overrightarrow{c}=18$.
So, by using the above formula of dot product of \[\overrightarrow{p}\] and $\overrightarrow{c}$, we get
\[\begin{align}
& \Rightarrow \overrightarrow{p}.\overrightarrow{c}=18 \\
& \Rightarrow ~\left( 32l \right)\left( 2 \right)+\left( -l \right)\left( -1 \right)+\left( -14l \right)\left( 4 \right)=18 \\
& \Rightarrow ~64l+l-56l=18 \\
& \Rightarrow ~9l=18 \\
& \Rightarrow ~l=\dfrac{18}{9} \\
& \Rightarrow ~l=2 \\
\end{align}\]
Then by substituting the value of $l$ in $\overrightarrow{p}$, we get
$\begin{align}
& \Rightarrow \overrightarrow{p}=32\left( 2 \right)\hat{i}-\left( 2 \right)\hat{j}-14\left( 2 \right)\hat{k} \\
& \Rightarrow \overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k} \\
\end{align}$
So, the value of vector $\overrightarrow{p}$ is $\overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k}$.
Hence the answer is $\overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k}$.
Note: The major mistake that one makes while solving this problem is exchanging the formulas of cross product and dot product for one another like considering $\overrightarrow{a}.\overrightarrow{b}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$ and \[~\overrightarrow{a}\times \overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\], which is wrong. So, one needs to remember the formulas for dot product and cross product and use them correctly.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

