
Find a vector $\overrightarrow{c}$, such that $\overrightarrow{a}\times \overrightarrow{c}=\overrightarrow{b}$ and $\overrightarrow{a}.\overrightarrow{c}=3$ if $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}$ and $\overrightarrow{b}=\hat{j}-\hat{k}$.
Answer
591.3k+ views
Hint: We start solving this problem by going through the concept of dot product, cross product and vector triple product. First, we apply the cross product to $\overrightarrow{a}\times \overrightarrow{c}$ and $\overrightarrow{b}$, and we use the vector triple product formula $\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}$. Then, we find the cross product of $\overrightarrow{a}$ and $\overrightarrow{b}$, and equate them. Then we solve the obtained equation to find the vector $\overrightarrow{c}$.
Complete step by step answer:
For solving this problem, we need to go through the concept of dot product and the cross product of two vectors and also vector triple product.
Dot product of vectors \[\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] can be given as,
\[~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
$\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ is the cross product of vectors $\overrightarrow{a}$ and $\overrightarrow{b}$, and can be given as,
$\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$
The vector triple product of three vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ is given by
$\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}$
We are given that $\overrightarrow{a}\times \overrightarrow{c}=\overrightarrow{b}$ and $\overrightarrow{a}.\overrightarrow{c}=3$.
Now let us consider, $\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)$. Then we get,
$\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=\overrightarrow{a}\times \overrightarrow{b}............\left( 1 \right)$
Using the triple vector product, we get that
$\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{a}-\left( \overrightarrow{a}.\overrightarrow{a} \right)\overrightarrow{c}$
Now using the formula for dot product and as $\overrightarrow{a}.\overrightarrow{c}=3$, we get
$\begin{align}
& \Rightarrow \overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=3\overrightarrow{a}-\left( 1\left( 1 \right)+1\left( 1 \right)+1\left( 1 \right) \right)\overrightarrow{c} \\
& \Rightarrow \overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=3\overrightarrow{a}-3\overrightarrow{c}..............\left( 2 \right) \\
\end{align}$
Now let us find the value of $\overrightarrow{a}\times \overrightarrow{b}$.
Using the formula for cross product we get,
$\begin{align}
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 1 & 1 \\
0 & 1 & -1 \\
\end{matrix} \right| \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
1 & 1 \\
1 & -1 \\
\end{matrix} \right|\hat{i}-\left| \begin{matrix}
1 & 1 \\
0 & -1 \\
\end{matrix} \right|\hat{j}+\left| \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right|\hat{k} \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left( -1-1 \right)\hat{i}-\left( -1-0 \right)\hat{j}+\left( 1-0 \right)\hat{k} \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=-2\hat{i}+\hat{j}+\hat{k}..............\left( 3 \right) \\
\end{align}$
Using equations (2) and (3) and substituting them in equation (1), we get
$\Rightarrow 3\overrightarrow{a}-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k}$
Now, let us substitute the vector $\overrightarrow{a}$ in it, then we get
$\begin{align}
& \Rightarrow 3\left( \hat{i}+\hat{j}+\hat{k} \right)-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k} \\
& \Rightarrow 3\hat{i}+3\hat{j}+3\hat{k}-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k} \\
& \Rightarrow 3\overrightarrow{c}=3\hat{i}+3\hat{j}+3\hat{k}-\left( -2\hat{i}+\hat{j}+\hat{k} \right) \\
& \Rightarrow 3\overrightarrow{c}=3\hat{i}+3\hat{j}+3\hat{k}+2\hat{i}-\hat{j}-\hat{k} \\
& \Rightarrow 3\overrightarrow{c}=5\hat{i}+2\hat{j}+2\hat{k} \\
& \Rightarrow \overrightarrow{c}=\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k} \\
\end{align}$
So, we get that the vector $\overrightarrow{c}$ is $\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k}$.
Hence, answer is $\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k}$.
Note: There is possibility of making a mistake while taking the vector triple product as $\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a}$ which is actually the formula for $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}$. So, one needs to be careful while applying the vector triple product while solving the problem.
Complete step by step answer:
For solving this problem, we need to go through the concept of dot product and the cross product of two vectors and also vector triple product.
Dot product of vectors \[\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] can be given as,
\[~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}\]
$\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ is the cross product of vectors $\overrightarrow{a}$ and $\overrightarrow{b}$, and can be given as,
$\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|$
The vector triple product of three vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ is given by
$\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}$
We are given that $\overrightarrow{a}\times \overrightarrow{c}=\overrightarrow{b}$ and $\overrightarrow{a}.\overrightarrow{c}=3$.
Now let us consider, $\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)$. Then we get,
$\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=\overrightarrow{a}\times \overrightarrow{b}............\left( 1 \right)$
Using the triple vector product, we get that
$\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{a}-\left( \overrightarrow{a}.\overrightarrow{a} \right)\overrightarrow{c}$
Now using the formula for dot product and as $\overrightarrow{a}.\overrightarrow{c}=3$, we get
$\begin{align}
& \Rightarrow \overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=3\overrightarrow{a}-\left( 1\left( 1 \right)+1\left( 1 \right)+1\left( 1 \right) \right)\overrightarrow{c} \\
& \Rightarrow \overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=3\overrightarrow{a}-3\overrightarrow{c}..............\left( 2 \right) \\
\end{align}$
Now let us find the value of $\overrightarrow{a}\times \overrightarrow{b}$.
Using the formula for cross product we get,
$\begin{align}
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 1 & 1 \\
0 & 1 & -1 \\
\end{matrix} \right| \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix}
1 & 1 \\
1 & -1 \\
\end{matrix} \right|\hat{i}-\left| \begin{matrix}
1 & 1 \\
0 & -1 \\
\end{matrix} \right|\hat{j}+\left| \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right|\hat{k} \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left( -1-1 \right)\hat{i}-\left( -1-0 \right)\hat{j}+\left( 1-0 \right)\hat{k} \\
& \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=-2\hat{i}+\hat{j}+\hat{k}..............\left( 3 \right) \\
\end{align}$
Using equations (2) and (3) and substituting them in equation (1), we get
$\Rightarrow 3\overrightarrow{a}-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k}$
Now, let us substitute the vector $\overrightarrow{a}$ in it, then we get
$\begin{align}
& \Rightarrow 3\left( \hat{i}+\hat{j}+\hat{k} \right)-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k} \\
& \Rightarrow 3\hat{i}+3\hat{j}+3\hat{k}-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k} \\
& \Rightarrow 3\overrightarrow{c}=3\hat{i}+3\hat{j}+3\hat{k}-\left( -2\hat{i}+\hat{j}+\hat{k} \right) \\
& \Rightarrow 3\overrightarrow{c}=3\hat{i}+3\hat{j}+3\hat{k}+2\hat{i}-\hat{j}-\hat{k} \\
& \Rightarrow 3\overrightarrow{c}=5\hat{i}+2\hat{j}+2\hat{k} \\
& \Rightarrow \overrightarrow{c}=\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k} \\
\end{align}$
So, we get that the vector $\overrightarrow{c}$ is $\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k}$.
Hence, answer is $\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k}$.
Note: There is possibility of making a mistake while taking the vector triple product as $\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a}$ which is actually the formula for $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}$. So, one needs to be careful while applying the vector triple product while solving the problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

