
How do you find a vector orthogonal to both $i+j$ and $i+k$?
Answer
548.1k+ views
Hint: We can let the unit vector orthogonal to both $i+j$ and $i+k$ as $r=ai+bj+ck$. Unit vector means its magnitude must be one, which will give ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$. Also, since the vector $r$ is orthogonal to both $i+j$ and $i+k$, its dot product with both of these vectors will be equal to zero. On putting these dot product equal to zero, we will get two equations in terms of $a$, $b$ and $c$ which on solving with ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$ will solve for the unit vector $r$.
Complete step by step solution:
Let us consider the two vectors given in the above question as $u$ and $v$ so that we can write the vector equations
$\Rightarrow u=i+j.......\left( i \right)$
And
\[\Rightarrow v=i+k.......\left( ii \right)\]
Now, let the unit vector orthogonal to both of the vectors $u$ and $v$ be $r$ such that
$\Rightarrow r=\left( ai+bj+ck \right)........\left( iii \right)$
Now, since $r$ is a unit vector, we can write
$\Rightarrow \left| r \right|=1$
From (iii) we can write
$\Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=1$
On squaring both the sides, we get
$\Rightarrow {{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1.......\left( iv \right)$
Now, since $r$ is orthogonal to $u$, we can write
$\Rightarrow r\cdot u=0$
Putting (i) and (iii) in the above equation, we get
\[\begin{align}
& \Rightarrow \left( ai+bj+ck \right)\cdot \left( i+j \right)=0 \\
& \Rightarrow a\left( 1 \right)+b\left( 1 \right)+c\left( 0 \right)=0 \\
& \Rightarrow a+b=0.......\left( v \right) \\
\end{align}\]
Also, since $r$ is orthogonal to $v$, we can write
$\Rightarrow r\cdot v=0$
Putting (ii) and (iii) in the above equation, we get
\[\begin{align}
& \Rightarrow \left( ai+bj+ck \right)\cdot \left( i+k \right)=0 \\
& \Rightarrow a\left( 1 \right)+b\left( 0 \right)+c\left( 1 \right)=0 \\
& \Rightarrow a+c=0.......\left( vi \right) \\
\end{align}\]
Subtracting (vi) from (v) we get
$\begin{align}
& \Rightarrow a+b-\left( a+c \right)=0 \\
& \Rightarrow a+b-a-c=0 \\
& \Rightarrow b-c=0 \\
& \Rightarrow b=c........\left( vii \right) \\
\end{align}$
Also, subtracting $b$ from both sides of the equation (v), we get
$\begin{align}
& \Rightarrow a+b-b=0-b \\
& \Rightarrow a=-b.......\left( viii \right) \\
\end{align}$
From (vii) and (viii) we can write
$\begin{align}
& \Rightarrow -a=b=c=\lambda \left( say \right) \\
& \Rightarrow a=-\lambda ,b=\lambda ,c=\lambda .......\left( ix \right) \\
\end{align}$
Therefore, the vector $r$ becomes
$\begin{align}
& \Rightarrow r=-\lambda i+\lambda j+\lambda k \\
& \Rightarrow r=\lambda \left( -i+j+k \right).......\left( x \right) \\
\end{align}$
Putting (ix) in (iv) we get
\[\begin{align}
& \Rightarrow {{\left( -\lambda \right)}^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}}=1 \\
& \Rightarrow {{\lambda }^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}}=1 \\
& \Rightarrow 3{{\lambda }^{2}}=1 \\
& \Rightarrow {{\lambda }^{2}}=\dfrac{1}{3} \\
\end{align}\]
On solving the above equation, we get
\[\begin{align}
& \Rightarrow \lambda =\pm \dfrac{1}{\sqrt{3}} \\
& \Rightarrow \lambda =\dfrac{1}{\sqrt{3}},\lambda =-\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Putting $\lambda =\dfrac{1}{\sqrt{3}}$ in (x) we get
$\Rightarrow r=\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$
Similarly, putting $\lambda =-\dfrac{1}{\sqrt{3}}$ we get
$\Rightarrow r=-\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$
Hence, the unit vectors perpendicular to the given vectors are $\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$ and $-\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$.
Note: We can also use the concept of cross product to obtain the unit vector perpendicular to $u$ and $v$. Since the unit vector $r$ is orthogonal to both $u$ and $v$, it must be normal to the plane formed by $u$ and $v$, which means that it must be parallel to the cross product $u\times v$. So the unit vector $r$ can be written as $r=\pm \dfrac{u\times v}{\left| u\times v \right|}$.
Complete step by step solution:
Let us consider the two vectors given in the above question as $u$ and $v$ so that we can write the vector equations
$\Rightarrow u=i+j.......\left( i \right)$
And
\[\Rightarrow v=i+k.......\left( ii \right)\]
Now, let the unit vector orthogonal to both of the vectors $u$ and $v$ be $r$ such that
$\Rightarrow r=\left( ai+bj+ck \right)........\left( iii \right)$
Now, since $r$ is a unit vector, we can write
$\Rightarrow \left| r \right|=1$
From (iii) we can write
$\Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=1$
On squaring both the sides, we get
$\Rightarrow {{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1.......\left( iv \right)$
Now, since $r$ is orthogonal to $u$, we can write
$\Rightarrow r\cdot u=0$
Putting (i) and (iii) in the above equation, we get
\[\begin{align}
& \Rightarrow \left( ai+bj+ck \right)\cdot \left( i+j \right)=0 \\
& \Rightarrow a\left( 1 \right)+b\left( 1 \right)+c\left( 0 \right)=0 \\
& \Rightarrow a+b=0.......\left( v \right) \\
\end{align}\]
Also, since $r$ is orthogonal to $v$, we can write
$\Rightarrow r\cdot v=0$
Putting (ii) and (iii) in the above equation, we get
\[\begin{align}
& \Rightarrow \left( ai+bj+ck \right)\cdot \left( i+k \right)=0 \\
& \Rightarrow a\left( 1 \right)+b\left( 0 \right)+c\left( 1 \right)=0 \\
& \Rightarrow a+c=0.......\left( vi \right) \\
\end{align}\]
Subtracting (vi) from (v) we get
$\begin{align}
& \Rightarrow a+b-\left( a+c \right)=0 \\
& \Rightarrow a+b-a-c=0 \\
& \Rightarrow b-c=0 \\
& \Rightarrow b=c........\left( vii \right) \\
\end{align}$
Also, subtracting $b$ from both sides of the equation (v), we get
$\begin{align}
& \Rightarrow a+b-b=0-b \\
& \Rightarrow a=-b.......\left( viii \right) \\
\end{align}$
From (vii) and (viii) we can write
$\begin{align}
& \Rightarrow -a=b=c=\lambda \left( say \right) \\
& \Rightarrow a=-\lambda ,b=\lambda ,c=\lambda .......\left( ix \right) \\
\end{align}$
Therefore, the vector $r$ becomes
$\begin{align}
& \Rightarrow r=-\lambda i+\lambda j+\lambda k \\
& \Rightarrow r=\lambda \left( -i+j+k \right).......\left( x \right) \\
\end{align}$
Putting (ix) in (iv) we get
\[\begin{align}
& \Rightarrow {{\left( -\lambda \right)}^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}}=1 \\
& \Rightarrow {{\lambda }^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}}=1 \\
& \Rightarrow 3{{\lambda }^{2}}=1 \\
& \Rightarrow {{\lambda }^{2}}=\dfrac{1}{3} \\
\end{align}\]
On solving the above equation, we get
\[\begin{align}
& \Rightarrow \lambda =\pm \dfrac{1}{\sqrt{3}} \\
& \Rightarrow \lambda =\dfrac{1}{\sqrt{3}},\lambda =-\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Putting $\lambda =\dfrac{1}{\sqrt{3}}$ in (x) we get
$\Rightarrow r=\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$
Similarly, putting $\lambda =-\dfrac{1}{\sqrt{3}}$ we get
$\Rightarrow r=-\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$
Hence, the unit vectors perpendicular to the given vectors are $\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$ and $-\dfrac{1}{\sqrt{3}}\left( -i+j+k \right)$.
Note: We can also use the concept of cross product to obtain the unit vector perpendicular to $u$ and $v$. Since the unit vector $r$ is orthogonal to both $u$ and $v$, it must be normal to the plane formed by $u$ and $v$, which means that it must be parallel to the cross product $u\times v$. So the unit vector $r$ can be written as $r=\pm \dfrac{u\times v}{\left| u\times v \right|}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

