
Find a formula for the nth derivative of \[\sin \left( {ax + b} \right)\] and \[\cos \left( {ax + b} \right)\].
Answer
475.2k+ views
Hint: In order to solve this question, for first part we will first differentiate the given function using \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and for second part by using \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\] . After that we will differentiate again and find a few more derivatives and try to transform in the form of a given function and in the form of the first derivative. Then finally generalise them to get the nth derivative.
Complete step by step answer:
For first part, the given function is,
\[f\left( x \right) = \sin \left( {ax + b{\text{ }}} \right){\text{ }} - - - \left( i \right)\]
Now in order to find the nth derivative, we will find the first few derivatives. For this we shall consider 1st, 2nd, and 3rd derivatives of the given function.Now we know that
\[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
Therefore, on differentiating equation \[\left( i \right)\] we get
\[{f^{\left( 1 \right)}}\left( x \right) = \cos \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = \cos \left( {ax + b} \right) \times a\]
Now we know \[\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = a\sin \left( {ax + b + \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {ii} \right)\]
Now let us consider \[{f^{\left( 1 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 2 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {a\sin \left( {ax + b + \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = a\cos \left( {ax + b + \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we get
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\sin \left( {ax + b + \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iii} \right)\]
Now similarly let us consider \[{f^{\left( 2 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 3 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {{a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we have
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\sin \left( {ax + b + 3 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iv} \right)\]
and so on….
Therefore, by observing equation \[\left( {ii} \right),\left( {iii} \right)\] and \[\left( {iv} \right)\] we get the nth derivative as,
\[{f^{\left( n \right)}}\left( x \right) = {a^n}\sin \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)\]
which is the required answer.
Therefore, the formula for the nth derivative of \[\sin \left( {ax + b} \right)\] is $ {a^n}\sin \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)$.
Now we will do same for second part:
The given function is
\[f\left( x \right) = \cos \left( {ax + b{\text{ }}} \right){\text{ }} - - - \left( i \right)\]
Now in order to find the nth derivative, we will find the first few derivatives. For this we shall consider 1st, 2nd, and 3rd derivatives of the given function.
Now we know that
\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Therefore, on differentiating equation \[\left( i \right)\] we get
\[{f^{\left( 1 \right)}}\left( x \right) = - \sin \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = - \sin \left( {ax + b} \right) \times a\]
Now we know \[ - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = a\cos \left( {ax + b + \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {ii} \right)\]
Now let us consider \[{f^{\left( 1 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 2 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {a\cos \left( {ax + b + \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = - a\sin \left( {ax + b + \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we get
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = - {a^2}\sin \left( {ax + b + \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[ - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iii} \right)\]
Now similarly let us consider \[{f^{\left( 2 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 3 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {{a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = - {a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we have
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = - {a^3}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[ - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 3 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iv} \right)\]
and so on….
Therefore, by observing equation \[\left( {ii} \right),\left( {iii} \right)\] and \[\left( {iv} \right)\] we get the nth derivative as,
\[{f^{\left( n \right)}}\left( x \right) = {a^n}\cos \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)\]
Therefore, the formula for the nth derivative of \[\cos \left( {ax + b} \right)\] is ${a^n}\cos \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)$.
Note: In this type of questions, the key point is that we have to simplify at least 3-4 differentiation of the given function to get some kind of variation. Also note that the main key point is expressing all the derivatives in the form of a given function. In this way we can observe the similarity between the derivatives in order to find the nth derivative.
Complete step by step answer:
For first part, the given function is,
\[f\left( x \right) = \sin \left( {ax + b{\text{ }}} \right){\text{ }} - - - \left( i \right)\]
Now in order to find the nth derivative, we will find the first few derivatives. For this we shall consider 1st, 2nd, and 3rd derivatives of the given function.Now we know that
\[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
Therefore, on differentiating equation \[\left( i \right)\] we get
\[{f^{\left( 1 \right)}}\left( x \right) = \cos \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = \cos \left( {ax + b} \right) \times a\]
Now we know \[\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = a\sin \left( {ax + b + \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {ii} \right)\]
Now let us consider \[{f^{\left( 1 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 2 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {a\sin \left( {ax + b + \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = a\cos \left( {ax + b + \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we get
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\sin \left( {ax + b + \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iii} \right)\]
Now similarly let us consider \[{f^{\left( 2 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 3 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {{a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we have
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\sin \left( {ax + b + 3 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iv} \right)\]
and so on….
Therefore, by observing equation \[\left( {ii} \right),\left( {iii} \right)\] and \[\left( {iv} \right)\] we get the nth derivative as,
\[{f^{\left( n \right)}}\left( x \right) = {a^n}\sin \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)\]
which is the required answer.
Therefore, the formula for the nth derivative of \[\sin \left( {ax + b} \right)\] is $ {a^n}\sin \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)$.
Now we will do same for second part:
The given function is
\[f\left( x \right) = \cos \left( {ax + b{\text{ }}} \right){\text{ }} - - - \left( i \right)\]
Now in order to find the nth derivative, we will find the first few derivatives. For this we shall consider 1st, 2nd, and 3rd derivatives of the given function.
Now we know that
\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Therefore, on differentiating equation \[\left( i \right)\] we get
\[{f^{\left( 1 \right)}}\left( x \right) = - \sin \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = - \sin \left( {ax + b} \right) \times a\]
Now we know \[ - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right)\]
\[ \Rightarrow {f^{\left( 1 \right)}}\left( x \right) = a\cos \left( {ax + b + \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {ii} \right)\]
Now let us consider \[{f^{\left( 1 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 2 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {a\cos \left( {ax + b + \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = - a\sin \left( {ax + b + \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we get
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = - {a^2}\sin \left( {ax + b + \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[ - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iii} \right)\]
Now similarly let us consider \[{f^{\left( 2 \right)}}\left( x \right)\] and differentiating it, we will get
\[{f^{\left( 3 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {{a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = - {a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right) \times a\]
Therefore, on solving we have
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = - {a^3}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)\]
Now transforming in the form of first derivative by using \[ - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right)\] , we can write
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
\[ \Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 3 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iv} \right)\]
and so on….
Therefore, by observing equation \[\left( {ii} \right),\left( {iii} \right)\] and \[\left( {iv} \right)\] we get the nth derivative as,
\[{f^{\left( n \right)}}\left( x \right) = {a^n}\cos \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)\]
Therefore, the formula for the nth derivative of \[\cos \left( {ax + b} \right)\] is ${a^n}\cos \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)$.
Note: In this type of questions, the key point is that we have to simplify at least 3-4 differentiation of the given function to get some kind of variation. Also note that the main key point is expressing all the derivatives in the form of a given function. In this way we can observe the similarity between the derivatives in order to find the nth derivative.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

