
Figure shows a conducting loop $ABCDA$ placed in a uniform magnetic field (strength $B$) perpendicular to its plane. The part $ABC$ is the (three-fourth) portion of the square of side length $l$. The part $ADC$ is a circular arc of radius $R$. The points $A$ and $C$ are connected to a battery which supplies a current $I$ to the circuit. The magnetic force on the loop due to the field $B$ is:
A. $zero$
B. $BIl$
C. $2BIR$
D. $\dfrac{{BIlR}}{{I + R}}$
Answer
583.2k+ views
Hint: Since, the current through the loop $ABCDA$ splits into to part, one flows through $ABC$ and other through $ADC$. During the current flow, there will be some force generated. To find the total force generated in the loop $ABCDA$, the force generated on loops $ABC$ and $ADC$ are calculated. Since, the two currents travel the same distance in the magnetic field, the current gets added. Thus, the total force can be calculated.
Useful formula:
Relation between force, current and magnetic field will be given by,
$F = BIl$
Where, $F$ is the force on the conductor, $B$ is the magnetic field, $I$ is the current flows through the conductor and $l$ is the length of the conductor.
Complete Step by step solution:
Assume that,
The current through the loop $ABC$ is $I1$
The current through the loop $ADC$ is $I2$
The length where the current flow in loop $ABC$ is ${l_1}$
The length where the current flow in loop $ADC$ is ${l_2}$
The force generated on the loop $ABC$,
${F_{ABC}} = B \times I1 \times {l_1}\;......................................\left( 1 \right)$
Where, ${F_{ABC}}$ is the force generated on loop $ABC$, $I1$ is the current flows through the loop $ABC$ and ${l_1}$ is the length of the loop $ABC$.
The force generated on the loop $ADC$,
${F_{ADC}} = B \times I2 \times {l_2}\;......................................\left( 2 \right)$
Where, ${F_{ADC}}$ is the force generated on loop $ADC$, $I2$ is the current flows through the loop $ADC$ and ${l_2}$ is the length of the loop $ADC$.
Hence, the total force on loop $ABCDA$ is the sum of the force on loop $ABC$ and the force on loop $ADC$,
$F = {F_{ABC}} + {F_{ADC}}..........................................\left( 3 \right)$
Substitute the values of (1) and (2) equation (1),
$
F = \left( {B \times I1 \times {l_1}} \right) + \left( {B \times I2 \times {l_2}} \right) \\
F = B\left[ {\left( {I1 \times {l_1}} \right) + \left( {I2 \times {l_2}} \right)} \right] \\
$
Since, the current travels the same length in the loops $ABC$ and $ADC$ ,
$l = {l_1} = {l_2}$
Hence,
$
F = B\left[ {\left( {I1 \times l} \right) + \left( {I2 \times l} \right)} \right] \\
F = B \times l\left[ {I1 + I2} \right] \\
$
The total current, $I = I1 + I2$
Thus,
$
F = B \times l\left[ I \right] \\
F = BIl \\
$
Hence, the option (B) is correct.
Note: In the loop $ABCDA$, even the structure of the loops $ABC$ and $ADC$ may vary, but the current flows through the loops in the uniform magnetic field travels the same distance in both the loops. A force will be generated in the current carrying conductor placed in a uniform magnetic field, this is the statement of Faraday’s law of induction. The force generated in the loop $ABCDA$, is the sum of the force generated in loops $ABC$ and $ADC$.
Useful formula:
Relation between force, current and magnetic field will be given by,
$F = BIl$
Where, $F$ is the force on the conductor, $B$ is the magnetic field, $I$ is the current flows through the conductor and $l$ is the length of the conductor.
Complete Step by step solution:
Assume that,
The current through the loop $ABC$ is $I1$
The current through the loop $ADC$ is $I2$
The length where the current flow in loop $ABC$ is ${l_1}$
The length where the current flow in loop $ADC$ is ${l_2}$
The force generated on the loop $ABC$,
${F_{ABC}} = B \times I1 \times {l_1}\;......................................\left( 1 \right)$
Where, ${F_{ABC}}$ is the force generated on loop $ABC$, $I1$ is the current flows through the loop $ABC$ and ${l_1}$ is the length of the loop $ABC$.
The force generated on the loop $ADC$,
${F_{ADC}} = B \times I2 \times {l_2}\;......................................\left( 2 \right)$
Where, ${F_{ADC}}$ is the force generated on loop $ADC$, $I2$ is the current flows through the loop $ADC$ and ${l_2}$ is the length of the loop $ADC$.
Hence, the total force on loop $ABCDA$ is the sum of the force on loop $ABC$ and the force on loop $ADC$,
$F = {F_{ABC}} + {F_{ADC}}..........................................\left( 3 \right)$
Substitute the values of (1) and (2) equation (1),
$
F = \left( {B \times I1 \times {l_1}} \right) + \left( {B \times I2 \times {l_2}} \right) \\
F = B\left[ {\left( {I1 \times {l_1}} \right) + \left( {I2 \times {l_2}} \right)} \right] \\
$
Since, the current travels the same length in the loops $ABC$ and $ADC$ ,
$l = {l_1} = {l_2}$
Hence,
$
F = B\left[ {\left( {I1 \times l} \right) + \left( {I2 \times l} \right)} \right] \\
F = B \times l\left[ {I1 + I2} \right] \\
$
The total current, $I = I1 + I2$
Thus,
$
F = B \times l\left[ I \right] \\
F = BIl \\
$
Hence, the option (B) is correct.
Note: In the loop $ABCDA$, even the structure of the loops $ABC$ and $ADC$ may vary, but the current flows through the loops in the uniform magnetic field travels the same distance in both the loops. A force will be generated in the current carrying conductor placed in a uniform magnetic field, this is the statement of Faraday’s law of induction. The force generated in the loop $ABCDA$, is the sum of the force generated in loops $ABC$ and $ADC$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Write any three uses of polaroids class 12 physics CBSE

