
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random, one at a time with replacement. The probability that the largest number appearing on a selected coupon be 9 is
A. $ {\left( {\dfrac{1}{{15}}} \right)^7} $
B. $ {\left( {\dfrac{8}{{15}}} \right)^7} $
C. $ {\left( {\dfrac{3}{5}} \right)^7} $
D.None of these
Answer
568.5k+ views
Hint: It is known that when $ r $ objects out of $ n $ are selected at random with replacement, the total number of ways to do so is given by $ {n^r} $ .
Also, to find the probability of an event, use the formula $ {\rm{Probability = }}\dfrac{{{\rm{Favorable cases}}}}{{{\rm{Total number of cases}}}} $
Complete step-by-step answer:
We know that, when $ r $ objects out of $ n $ are selected at random with replacement, the total number of ways to do so is given by $ {n^r} $ .
On applying the same concept, we have that 7 coupons are selected from 15 at random with replacement, so $ n = 15 $ and $ r = 7 $
Hence, the total number of ways to select 7 coupons at random with replacement is given by $ {15^7} $ .
For 9 to be the largest amongst the selected coupons, the coupons must be selected from 1, 2, 3, ….,9.
From these 9 coupons only 7 are to be selected with replacement. So, in this case, $ n = 9 $ and $ r = 7 $ .
This can be done in $ {9^7} $ ways.
But there may be cases in which the coupon bearing number 9 won’t be selected.
In such a case, the highest number would be 8.
So, the number of ways to select 7 coupons from 8 coupons with replacement is given by $ {8^7} $ .
But the required cases should contain only the cases where the largest number on the coupon should be 9. So, we shall have to subtract the cases where 9 is not the largest from the cases where 9 is the largest.
The number of cases in which the 9 is largest is given by $ {9^7} - {8^7} $ .
In this question, we are asked to find the probability that the largest number appearing on the coupon is 9.
We have to apply the formula i.e.
$\Rightarrow {\rm{Probability = }}\dfrac{{{\text{Favorable cases}}}}{{{\rm{Total number of cases}}}} $
The probability that the largest number appearing on the coupon is 9 $ {\rm{ = }}\dfrac{{{9^7} - {8^7}}}{{15{}^7}} $ .
So, the correct answer is “Option D”.
Note: Students should take care of the language used in this question. There is a possibility that students might misunderstand the language while calculating the value of probability.
When $ r $ objects out of $ n $ are selected at random with replacement, the total number of ways to do so is given by $ {n^r} $ . Students should take care while using this formula, they often mistake the value to be $ {r^n} $ instead of $ {n^r} $ .
Also, to find the probability of an event, use the formula $ {\rm{Probability = }}\dfrac{{{\rm{Favorable cases}}}}{{{\rm{Total number of cases}}}} $
Complete step-by-step answer:
We know that, when $ r $ objects out of $ n $ are selected at random with replacement, the total number of ways to do so is given by $ {n^r} $ .
On applying the same concept, we have that 7 coupons are selected from 15 at random with replacement, so $ n = 15 $ and $ r = 7 $
Hence, the total number of ways to select 7 coupons at random with replacement is given by $ {15^7} $ .
For 9 to be the largest amongst the selected coupons, the coupons must be selected from 1, 2, 3, ….,9.
From these 9 coupons only 7 are to be selected with replacement. So, in this case, $ n = 9 $ and $ r = 7 $ .
This can be done in $ {9^7} $ ways.
But there may be cases in which the coupon bearing number 9 won’t be selected.
In such a case, the highest number would be 8.
So, the number of ways to select 7 coupons from 8 coupons with replacement is given by $ {8^7} $ .
But the required cases should contain only the cases where the largest number on the coupon should be 9. So, we shall have to subtract the cases where 9 is not the largest from the cases where 9 is the largest.
The number of cases in which the 9 is largest is given by $ {9^7} - {8^7} $ .
In this question, we are asked to find the probability that the largest number appearing on the coupon is 9.
We have to apply the formula i.e.
$\Rightarrow {\rm{Probability = }}\dfrac{{{\text{Favorable cases}}}}{{{\rm{Total number of cases}}}} $
The probability that the largest number appearing on the coupon is 9 $ {\rm{ = }}\dfrac{{{9^7} - {8^7}}}{{15{}^7}} $ .
So, the correct answer is “Option D”.
Note: Students should take care of the language used in this question. There is a possibility that students might misunderstand the language while calculating the value of probability.
When $ r $ objects out of $ n $ are selected at random with replacement, the total number of ways to do so is given by $ {n^r} $ . Students should take care while using this formula, they often mistake the value to be $ {r^n} $ instead of $ {n^r} $ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

