
Family of lines represented by the equation $\left( \cos \theta +\sin \theta \right)x+\left( \cos \theta -\sin \theta \right)y-3\left( 3\cos \theta +\sin \theta \right)=0$ passes through fixed point $M$ for all real value of $\theta $. Find $M$
A. $\left( 6,3 \right)$
B. $\left( 3,6 \right)$
C. $\left( -6,2 \right)$
D. $\left( 3,-6 \right)$
Answer
560.4k+ views
Hint: We will simplify the given family of lines and convert the given equation in the form of ${{L}_{1}}+\lambda {{L}_{2}}$. We know that the point of intersection of the lines can be given by solving ${{L}_{1}}=0$ and ${{L}_{2}}=0$.
Complete step-by-step answer:
Given that, family of curves represented by $\left( \cos \theta +\sin \theta \right)x+\left( \cos \theta -\sin \theta \right)y-3\left( 3\cos \theta +\sin \theta \right)=0$
Using multiplication distributive law i.e. $a\left( b+c \right)=ab+ac$ in the above equation then we will get
$\begin{align}
& \left( \cos \theta +\sin \theta \right)x+\left( \cos \theta -\sin \theta \right)y-3\left( 3\cos \theta +\sin \theta \right)=0 \\
& \Rightarrow x\cos \theta +x\sin \theta +y\cos \theta -y\sin \theta -9\cos \theta -3\sin \theta =0 \\
\end{align}$
Rearranging the terms in the above equation so that all the $\cos \theta $ terms at one place and the all the $\sin \theta $ terms are at one place.
$\Rightarrow \left( x\cos \theta +y\cos \theta -9\cos \theta \right)+\left( x\sin \theta -y\sin \theta -3\sin \theta \right)=0$
Now taking $\cos \theta $ common from the first term and $\sin \theta $ from the second term, then we will have
$\left( x+y-9 \right)\cos \theta +\left( x-y-3 \right)\sin \theta =0$
Dividing the above equation with $\cos \theta $ then we will get
$\begin{align}
& \left( x+y-9 \right)\dfrac{\cos \theta }{\cos \theta }+\left( x-y-3 \right)\dfrac{\sin \theta }{\cos \theta }=\dfrac{0}{\cos \theta } \\
& \Rightarrow \left( x+y-9 \right)+\tan \theta \left( x-y-3 \right)=0 \\
\end{align}$
Comparing the above equation with the family of line ${{L}_{1}}+\lambda {{L}_{2}}=0$, then we will have
${{L}_{1}}=x+y-9$
${{L}_{2}}=x-y-3$
We know that the point of intersection of the family of line ${{L}_{1}}+\lambda {{L}_{2}}=0$ can be given by solving ${{L}_{1}}=0$ and ${{L}_{2}}=0$.
$\therefore $ solving $x+y-9=0$ and $x-y-3=0$.
Value of $y$ from $x-y-3=0$ is given by $y=x-3$.
Substituting the value of $y$ from $x-y-3=0$ in the equation $x+y-9=0$, then we will get
$\begin{align}
& x+y-9=0 \\
& \Rightarrow x+\left( x-3 \right)-9=0 \\
& \Rightarrow x+x-3-9=0 \\
\end{align}$
We know that $a+a=2a$ then
$2x-12=0$
Adding $12$ on both sides of the above equation, then we will have
$2x-12+12=0+12$
We know that $a-a=0$, then
$\Rightarrow 2x=12$
Dividing the above equation with $2$ on both sides of the equation, then
$\begin{align}
& \Rightarrow \dfrac{2x}{2}=\dfrac{12}{2} \\
& \Rightarrow x=6 \\
\end{align}$
Now the value of $y$ is $y=x-3=6-3=3$.
$\therefore $Point of intersection of the family of lines is $\left( x,y \right)=\left( 6,3 \right)$.
Option – A is correct answer.
So, the correct answer is “Option A”.
Note: We can solve the equations $x+y-9=0$ and $x-y-3=0$ by adding both of them, then we will get
$\begin{align}
& x+y-9+\left( x-y-3 \right)=0+0 \\
& \Rightarrow x+y-9+x-y-3=0 \\
\end{align}$
Using $a+a=2a$, $a-a=0$ at a time in the above equation, then we will have
$\begin{align}
& \Rightarrow 2x-12=0 \\
& \Rightarrow 2x=12 \\
& \Rightarrow x=6 \\
\end{align}$
Now the value of $y$ from $x+y-9=0$ can be calculated by substituting the value of $x=6$, then
$\begin{align}
& x+y-9=0 \\
& \Rightarrow 6+y-9=0 \\
& \Rightarrow y-3=0 \\
& \Rightarrow y=3 \\
\end{align}$
From both the methods we got the same answer.
Complete step-by-step answer:
Given that, family of curves represented by $\left( \cos \theta +\sin \theta \right)x+\left( \cos \theta -\sin \theta \right)y-3\left( 3\cos \theta +\sin \theta \right)=0$
Using multiplication distributive law i.e. $a\left( b+c \right)=ab+ac$ in the above equation then we will get
$\begin{align}
& \left( \cos \theta +\sin \theta \right)x+\left( \cos \theta -\sin \theta \right)y-3\left( 3\cos \theta +\sin \theta \right)=0 \\
& \Rightarrow x\cos \theta +x\sin \theta +y\cos \theta -y\sin \theta -9\cos \theta -3\sin \theta =0 \\
\end{align}$
Rearranging the terms in the above equation so that all the $\cos \theta $ terms at one place and the all the $\sin \theta $ terms are at one place.
$\Rightarrow \left( x\cos \theta +y\cos \theta -9\cos \theta \right)+\left( x\sin \theta -y\sin \theta -3\sin \theta \right)=0$
Now taking $\cos \theta $ common from the first term and $\sin \theta $ from the second term, then we will have
$\left( x+y-9 \right)\cos \theta +\left( x-y-3 \right)\sin \theta =0$
Dividing the above equation with $\cos \theta $ then we will get
$\begin{align}
& \left( x+y-9 \right)\dfrac{\cos \theta }{\cos \theta }+\left( x-y-3 \right)\dfrac{\sin \theta }{\cos \theta }=\dfrac{0}{\cos \theta } \\
& \Rightarrow \left( x+y-9 \right)+\tan \theta \left( x-y-3 \right)=0 \\
\end{align}$
Comparing the above equation with the family of line ${{L}_{1}}+\lambda {{L}_{2}}=0$, then we will have
${{L}_{1}}=x+y-9$
${{L}_{2}}=x-y-3$
We know that the point of intersection of the family of line ${{L}_{1}}+\lambda {{L}_{2}}=0$ can be given by solving ${{L}_{1}}=0$ and ${{L}_{2}}=0$.
$\therefore $ solving $x+y-9=0$ and $x-y-3=0$.
Value of $y$ from $x-y-3=0$ is given by $y=x-3$.
Substituting the value of $y$ from $x-y-3=0$ in the equation $x+y-9=0$, then we will get
$\begin{align}
& x+y-9=0 \\
& \Rightarrow x+\left( x-3 \right)-9=0 \\
& \Rightarrow x+x-3-9=0 \\
\end{align}$
We know that $a+a=2a$ then
$2x-12=0$
Adding $12$ on both sides of the above equation, then we will have
$2x-12+12=0+12$
We know that $a-a=0$, then
$\Rightarrow 2x=12$
Dividing the above equation with $2$ on both sides of the equation, then
$\begin{align}
& \Rightarrow \dfrac{2x}{2}=\dfrac{12}{2} \\
& \Rightarrow x=6 \\
\end{align}$
Now the value of $y$ is $y=x-3=6-3=3$.
$\therefore $Point of intersection of the family of lines is $\left( x,y \right)=\left( 6,3 \right)$.
Option – A is correct answer.
So, the correct answer is “Option A”.
Note: We can solve the equations $x+y-9=0$ and $x-y-3=0$ by adding both of them, then we will get
$\begin{align}
& x+y-9+\left( x-y-3 \right)=0+0 \\
& \Rightarrow x+y-9+x-y-3=0 \\
\end{align}$
Using $a+a=2a$, $a-a=0$ at a time in the above equation, then we will have
$\begin{align}
& \Rightarrow 2x-12=0 \\
& \Rightarrow 2x=12 \\
& \Rightarrow x=6 \\
\end{align}$
Now the value of $y$ from $x+y-9=0$ can be calculated by substituting the value of $x=6$, then
$\begin{align}
& x+y-9=0 \\
& \Rightarrow 6+y-9=0 \\
& \Rightarrow y-3=0 \\
& \Rightarrow y=3 \\
\end{align}$
From both the methods we got the same answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

