
Factorise the following algebraic expression
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)$
Answer
510.6k+ views
Hint: Expand the expressions $ab\left( {{x}^{2}}+{{y}^{2}} \right)$ and $xy\left( {{a}^{2}}+{{b}^{2}} \right)$. Take $ax$ common from $ab{{x}^{2}}\text{ and}\ {{a}^{2}}xy$ and $by$ common from $ab{{y}^{2}}\text{ and }a{{b}^{2}}y$. Finally, take $ax-by$ as common in the resulting expression and factorise to get the result.
Complete step-by-step answer:
Before solving the question, we need to know the meaning of factorisation. Consider two algebraic expressions ${{a}^{2}}-{{b}^{2}}$ and $\left( a+b \right)\left( a-b \right)$. Let us simplify the latter expression. Applying distributive property we get $\left( a+b \right)\left( a-b \right)=\left( a+b \right)a-\left( a+b \right)b$
Applying distributive property again we get
$\left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-\left[ ab+{{b}^{2}} \right]$
Simplifying, we get
$\begin{align}
& \left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-ab-{{b}^{2}} \\
& ={{a}^{2}}-{{b}^{2}} \\
\end{align}$
Hence the two expressions are equal.
Step 1: Expand the expressions
We have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)=ab{{x}^{2}}+ab{{y}^{2}}$ and $xy\left( {{a}^{2}}+{{b}^{2}} \right)=xy{{a}^{2}}+xy{{b}^{2}}$
Hence, we have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab{{x}^{2}}+ab{{y}^{2}}-xy{{a}^{2}}-xy{{b}^{2}}$
Step 2: Take $ax$ common in the first and the third term and $by$ common in the second and the last term.
We have
$ab{{x}^{2}}-xy{{a}^{2}}=ax\left( bx-ay \right)$ and $ab{{y}^{2}}-xy{{b}^{2}}=by\left( ay-bx \right)=-by\left( bx-ay \right)$
Hence, we have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ax\left( bx-ay \right)-by\left( bx-ay \right)$
Step 3: Taking $bx-ay$ common from the terms, we get
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=\left( bx-ay \right)\left( ax-by \right)$, which is the required factored from of the given expression
Note: Verification:
We have
$\left( bx-ay \right)\left( ax-by \right)=\left( bx \right)\left( ax \right)-\left( bx \right)\left( by \right)-\left( ay \right)\left( ax \right)+\left( ay \right)\left( by \right)$
Hence, we have
$\left( bx-ay \right)\left( ax-by \right)=ab{{x}^{2}}-{{b}^{2}}xy-{{a}^{2}}xy+ab{{y}^{2}}$
Taking ab common from the first and the last term and xy common form the second and the third term, we get
$\left( bx-ay \right)\left( ax-by \right)=ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)$
Hence our answer is verified to be correct.
[2] Alternative Solution:
We have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)={{x}^{2}}ab-xy\left( {{a}^{2}}+{{b}^{2}} \right)+ab{{y}^{2}}$, which is quadratic in x.
We will factorise the expression using the method of completing the square.
Making coefficient of ${{x}^{2}}$ equal to 1
We have $ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( {{x}^{2}}-\dfrac{xy\left( {{a}^{2}}+{{b}^{2}} \right)}{ab}+{{y}^{2}} \right)$
Adding and subtracting ${{\left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}$, we get
$\begin{align}
& ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( {{x}^{2}}-2\times \left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)+{{\left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}-{{\left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}+{{y}^{2}} \right) \\
& \Rightarrow ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( {{\left( x-\dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}-{{y}^{2}}{{\left( \dfrac{{{a}^{2}}-{{b}^{2}}}{2ab} \right)}^{2}} \right) \\
\end{align}$
Hence, we have
$\begin{align}
& ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( x-\dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab}+y\left( \dfrac{{{a}^{2}}-{{b}^{2}}}{2ab} \right) \right)\left( x-\dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab}-y\left( \dfrac{{{a}^{2}}-{{b}^{2}}}{2ab} \right) \right) \\
& =ab\left( x-\dfrac{ya}{b} \right)\left( x-\dfrac{yb}{a} \right)=\left( bx-ay \right)\left( ax-by \right) \\
\end{align}$
Complete step-by-step answer:
Before solving the question, we need to know the meaning of factorisation. Consider two algebraic expressions ${{a}^{2}}-{{b}^{2}}$ and $\left( a+b \right)\left( a-b \right)$. Let us simplify the latter expression. Applying distributive property we get $\left( a+b \right)\left( a-b \right)=\left( a+b \right)a-\left( a+b \right)b$
Applying distributive property again we get
$\left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-\left[ ab+{{b}^{2}} \right]$
Simplifying, we get
$\begin{align}
& \left( a+b \right)\left( a-b \right)={{a}^{2}}+ab-ab-{{b}^{2}} \\
& ={{a}^{2}}-{{b}^{2}} \\
\end{align}$
Hence the two expressions are equal.
Step 1: Expand the expressions
We have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)=ab{{x}^{2}}+ab{{y}^{2}}$ and $xy\left( {{a}^{2}}+{{b}^{2}} \right)=xy{{a}^{2}}+xy{{b}^{2}}$
Hence, we have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab{{x}^{2}}+ab{{y}^{2}}-xy{{a}^{2}}-xy{{b}^{2}}$
Step 2: Take $ax$ common in the first and the third term and $by$ common in the second and the last term.
We have
$ab{{x}^{2}}-xy{{a}^{2}}=ax\left( bx-ay \right)$ and $ab{{y}^{2}}-xy{{b}^{2}}=by\left( ay-bx \right)=-by\left( bx-ay \right)$
Hence, we have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ax\left( bx-ay \right)-by\left( bx-ay \right)$
Step 3: Taking $bx-ay$ common from the terms, we get
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=\left( bx-ay \right)\left( ax-by \right)$, which is the required factored from of the given expression
Note: Verification:
We have
$\left( bx-ay \right)\left( ax-by \right)=\left( bx \right)\left( ax \right)-\left( bx \right)\left( by \right)-\left( ay \right)\left( ax \right)+\left( ay \right)\left( by \right)$
Hence, we have
$\left( bx-ay \right)\left( ax-by \right)=ab{{x}^{2}}-{{b}^{2}}xy-{{a}^{2}}xy+ab{{y}^{2}}$
Taking ab common from the first and the last term and xy common form the second and the third term, we get
$\left( bx-ay \right)\left( ax-by \right)=ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)$
Hence our answer is verified to be correct.
[2] Alternative Solution:
We have
$ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)={{x}^{2}}ab-xy\left( {{a}^{2}}+{{b}^{2}} \right)+ab{{y}^{2}}$, which is quadratic in x.
We will factorise the expression using the method of completing the square.
Making coefficient of ${{x}^{2}}$ equal to 1
We have $ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( {{x}^{2}}-\dfrac{xy\left( {{a}^{2}}+{{b}^{2}} \right)}{ab}+{{y}^{2}} \right)$
Adding and subtracting ${{\left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}$, we get
$\begin{align}
& ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( {{x}^{2}}-2\times \left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)+{{\left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}-{{\left( \dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}+{{y}^{2}} \right) \\
& \Rightarrow ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( {{\left( x-\dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab} \right)}^{2}}-{{y}^{2}}{{\left( \dfrac{{{a}^{2}}-{{b}^{2}}}{2ab} \right)}^{2}} \right) \\
\end{align}$
Hence, we have
$\begin{align}
& ab\left( {{x}^{2}}+{{y}^{2}} \right)-xy\left( {{a}^{2}}+{{b}^{2}} \right)=ab\left( x-\dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab}+y\left( \dfrac{{{a}^{2}}-{{b}^{2}}}{2ab} \right) \right)\left( x-\dfrac{y\left( {{a}^{2}}+{{b}^{2}} \right)}{2ab}-y\left( \dfrac{{{a}^{2}}-{{b}^{2}}}{2ab} \right) \right) \\
& =ab\left( x-\dfrac{ya}{b} \right)\left( x-\dfrac{yb}{a} \right)=\left( bx-ay \right)\left( ax-by \right) \\
\end{align}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
