
Factorise the expression : ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$.
Answer
437.1k+ views
Hint: As we are given in the question factorise ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$. ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ is an algebraic expression which we need to factorise. The process of finding two or more expressions whose product is the given expression is called the factorization of algebraic expressions. We can factorise ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ by using different identities.
Formulae used:
1. ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)$
2. ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
3. ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
4. \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step-by-step solution:
Given: Factorise ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$
As we can see ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ looks familiar to ${a^3} + {b^3}$. And its identity is ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)$
So, we can expand ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ using the above written identity as,
Here, we take $a = x + 1$ and $b = x - 1$
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {x + 1 + x - 1} \right)\left( {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right)$
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {x + x} \right)\left( {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right)$
On addition of like terms, we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right)$
Here, we can see that our expression is now in the form of different identities.
We can use ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ identity to expand ${\left( {x + 1} \right)^2}$.
Similarly, we can use ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ identity to expand ${\left( {x - 1} \right)^2}$.
And also, here we have the expansion of \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]. So we can write $\left( {x + 1} \right)\left( {x - 1} \right) = {x^2} - {1^2}$
On expansion using these identities, we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + {1^2} + 2x - \left( {{x^2} - {1^2}} \right) + {x^2} + {1^2} - 2x} \right)$
On simplifying, we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + {1^2} + 2x - {x^2} + {1^2} + {x^2} + {1^2} - 2x} \right)$
On addition and subtraction of like terms, we get
(Like terms are the terms that have the same variables and powers, unlike terms whose variables and powers are different from each other. The coefficients do not need to match)
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + {1^2} + {1^2} + {1^2}} \right)$
Square of $1$ is $1$, therefore we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + 1 + 1 + 1} \right)$
On addition, we get
$\therefore {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + 3} \right)$
Therefore, factors of ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ are $\left( {2x} \right)\left( {{x^2} + 3} \right)$.
Note: In the question, we used different identities to factorise the algebraic expression. Algebraic expressions can be factored using many methods: factorization using common factors, factorization using identities, and factorization by regrouping terms. While solving algebraic expression types of questions, be careful about identities and be careful about how to add or multiply the exponents.
Formulae used:
1. ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)$
2. ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
3. ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
4. \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step-by-step solution:
Given: Factorise ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$
As we can see ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ looks familiar to ${a^3} + {b^3}$. And its identity is ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)$
So, we can expand ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ using the above written identity as,
Here, we take $a = x + 1$ and $b = x - 1$
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {x + 1 + x - 1} \right)\left( {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right)$
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {x + x} \right)\left( {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right)$
On addition of like terms, we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{{\left( {x + 1} \right)}^2} - \left( {x + 1} \right)\left( {x - 1} \right) + {{\left( {x - 1} \right)}^2}} \right)$
Here, we can see that our expression is now in the form of different identities.
We can use ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ identity to expand ${\left( {x + 1} \right)^2}$.
Similarly, we can use ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ identity to expand ${\left( {x - 1} \right)^2}$.
And also, here we have the expansion of \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]. So we can write $\left( {x + 1} \right)\left( {x - 1} \right) = {x^2} - {1^2}$
On expansion using these identities, we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + {1^2} + 2x - \left( {{x^2} - {1^2}} \right) + {x^2} + {1^2} - 2x} \right)$
On simplifying, we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + {1^2} + 2x - {x^2} + {1^2} + {x^2} + {1^2} - 2x} \right)$
On addition and subtraction of like terms, we get
(Like terms are the terms that have the same variables and powers, unlike terms whose variables and powers are different from each other. The coefficients do not need to match)
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + {1^2} + {1^2} + {1^2}} \right)$
Square of $1$ is $1$, therefore we get
$ \Rightarrow {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + 1 + 1 + 1} \right)$
On addition, we get
$\therefore {\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3} = \left( {2x} \right)\left( {{x^2} + 3} \right)$
Therefore, factors of ${\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}$ are $\left( {2x} \right)\left( {{x^2} + 3} \right)$.
Note: In the question, we used different identities to factorise the algebraic expression. Algebraic expressions can be factored using many methods: factorization using common factors, factorization using identities, and factorization by regrouping terms. While solving algebraic expression types of questions, be careful about identities and be careful about how to add or multiply the exponents.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which is the largest saltwater lake in India A Chilika class 8 social science CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE
