
Factorise: $ {p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} $
Answer
513k+ views
Hint: In this type of question we can apply the identity of $ {\left( {a - b} \right)^3} $ on the terms of the given expression $ {\left( {q - r} \right)^3},{\left( {r - p} \right)^3},{\left( {p - q} \right)^3} $ . Then simplify the expression till it becomes in multiples of linear equations (equation having degree 1).
Complete step-by-step answer:
The given expression for factorisation is: $ {p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} $
In this expression we see the terms $ {\left( {q - r} \right)^3},{\left( {r - p} \right)^3},{\left( {p - q} \right)^3} $ , and $ {p^3},{q^3},{r^3} $ have the same exponent and they are in multiple to each other.
So we know that, when two different values in multiple to each other and having same exponent, then their exponent become common to both terms and the values get multiply,
$ {a^m}{b^m} = {(ab)^m} $
Applying this identity over the given expression we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} $
Now taking the each term of the expression as variable then we get the expression as:
$
\Rightarrow a = \left( {p\left( {q - r} \right)} \right)...................(i)\\
\Rightarrow b = \left( {q\left( {r - p} \right)} \right)...................(ii)\\
\Rightarrow c = \left( {r\left( {p - q} \right)} \right)...................(iii)
$
Adding the equation (i), (ii) and (iii) we get,
$ \Rightarrow a + b + c = \left( {p\left( {q - r} \right)} \right) + \left( {q\left( {r - p} \right)} \right) + \left( {r\left( {p - q} \right)} \right) $
By solving the expression we get,
$ \Rightarrow a + b + c = pq - pr + qr - qp + rp - rq $
We found that all the given terms are in positive as well in negative form so, all get cancel then we get,
$ a + b + c = 0 $
And we know that,
$ {a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ (Identity)
Here the value of the expression \[a + b + c\] is 0. So after substituting the value in the identity then we get,
$ {a^3} + {b^3} + {c^3} - 3abc = 0 \times \left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $
The value 0 is in multiple with expression of left-hand side make the whole expression 0 so we get the identity as:
$
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0\\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc
$
Substituting the value of a, b and c in the identity then we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} = 3p\left( {q - r} \right) \times q\left( {r - p} \right) \times r\left( {p - q} \right)\\
{p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} = 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $
This is the required factorise form the given expression. $ 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $ are the factors of the given expression.
Note: In this type of problem, we can also find the factorise of the expression by using the long division method still we will get the same result. Using algebraic identities we just compare the expression with identities and expand it.
Complete step-by-step answer:
The given expression for factorisation is: $ {p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} $
In this expression we see the terms $ {\left( {q - r} \right)^3},{\left( {r - p} \right)^3},{\left( {p - q} \right)^3} $ , and $ {p^3},{q^3},{r^3} $ have the same exponent and they are in multiple to each other.
So we know that, when two different values in multiple to each other and having same exponent, then their exponent become common to both terms and the values get multiply,
$ {a^m}{b^m} = {(ab)^m} $
Applying this identity over the given expression we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} $
Now taking the each term of the expression as variable then we get the expression as:
$
\Rightarrow a = \left( {p\left( {q - r} \right)} \right)...................(i)\\
\Rightarrow b = \left( {q\left( {r - p} \right)} \right)...................(ii)\\
\Rightarrow c = \left( {r\left( {p - q} \right)} \right)...................(iii)
$
Adding the equation (i), (ii) and (iii) we get,
$ \Rightarrow a + b + c = \left( {p\left( {q - r} \right)} \right) + \left( {q\left( {r - p} \right)} \right) + \left( {r\left( {p - q} \right)} \right) $
By solving the expression we get,
$ \Rightarrow a + b + c = pq - pr + qr - qp + rp - rq $
We found that all the given terms are in positive as well in negative form so, all get cancel then we get,
$ a + b + c = 0 $
And we know that,
$ {a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ (Identity)
Here the value of the expression \[a + b + c\] is 0. So after substituting the value in the identity then we get,
$ {a^3} + {b^3} + {c^3} - 3abc = 0 \times \left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $
The value 0 is in multiple with expression of left-hand side make the whole expression 0 so we get the identity as:
$
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0\\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc
$
Substituting the value of a, b and c in the identity then we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} = 3p\left( {q - r} \right) \times q\left( {r - p} \right) \times r\left( {p - q} \right)\\
{p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} = 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $
This is the required factorise form the given expression. $ 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $ are the factors of the given expression.
Note: In this type of problem, we can also find the factorise of the expression by using the long division method still we will get the same result. Using algebraic identities we just compare the expression with identities and expand it.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE
