
Factorise: $ {p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} $
Answer
561.6k+ views
Hint: In this type of question we can apply the identity of $ {\left( {a - b} \right)^3} $ on the terms of the given expression $ {\left( {q - r} \right)^3},{\left( {r - p} \right)^3},{\left( {p - q} \right)^3} $ . Then simplify the expression till it becomes in multiples of linear equations (equation having degree 1).
Complete step-by-step answer:
The given expression for factorisation is: $ {p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} $
In this expression we see the terms $ {\left( {q - r} \right)^3},{\left( {r - p} \right)^3},{\left( {p - q} \right)^3} $ , and $ {p^3},{q^3},{r^3} $ have the same exponent and they are in multiple to each other.
So we know that, when two different values in multiple to each other and having same exponent, then their exponent become common to both terms and the values get multiply,
$ {a^m}{b^m} = {(ab)^m} $
Applying this identity over the given expression we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} $
Now taking the each term of the expression as variable then we get the expression as:
$
\Rightarrow a = \left( {p\left( {q - r} \right)} \right)...................(i)\\
\Rightarrow b = \left( {q\left( {r - p} \right)} \right)...................(ii)\\
\Rightarrow c = \left( {r\left( {p - q} \right)} \right)...................(iii)
$
Adding the equation (i), (ii) and (iii) we get,
$ \Rightarrow a + b + c = \left( {p\left( {q - r} \right)} \right) + \left( {q\left( {r - p} \right)} \right) + \left( {r\left( {p - q} \right)} \right) $
By solving the expression we get,
$ \Rightarrow a + b + c = pq - pr + qr - qp + rp - rq $
We found that all the given terms are in positive as well in negative form so, all get cancel then we get,
$ a + b + c = 0 $
And we know that,
$ {a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ (Identity)
Here the value of the expression \[a + b + c\] is 0. So after substituting the value in the identity then we get,
$ {a^3} + {b^3} + {c^3} - 3abc = 0 \times \left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $
The value 0 is in multiple with expression of left-hand side make the whole expression 0 so we get the identity as:
$
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0\\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc
$
Substituting the value of a, b and c in the identity then we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} = 3p\left( {q - r} \right) \times q\left( {r - p} \right) \times r\left( {p - q} \right)\\
{p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} = 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $
This is the required factorise form the given expression. $ 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $ are the factors of the given expression.
Note: In this type of problem, we can also find the factorise of the expression by using the long division method still we will get the same result. Using algebraic identities we just compare the expression with identities and expand it.
Complete step-by-step answer:
The given expression for factorisation is: $ {p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} $
In this expression we see the terms $ {\left( {q - r} \right)^3},{\left( {r - p} \right)^3},{\left( {p - q} \right)^3} $ , and $ {p^3},{q^3},{r^3} $ have the same exponent and they are in multiple to each other.
So we know that, when two different values in multiple to each other and having same exponent, then their exponent become common to both terms and the values get multiply,
$ {a^m}{b^m} = {(ab)^m} $
Applying this identity over the given expression we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} $
Now taking the each term of the expression as variable then we get the expression as:
$
\Rightarrow a = \left( {p\left( {q - r} \right)} \right)...................(i)\\
\Rightarrow b = \left( {q\left( {r - p} \right)} \right)...................(ii)\\
\Rightarrow c = \left( {r\left( {p - q} \right)} \right)...................(iii)
$
Adding the equation (i), (ii) and (iii) we get,
$ \Rightarrow a + b + c = \left( {p\left( {q - r} \right)} \right) + \left( {q\left( {r - p} \right)} \right) + \left( {r\left( {p - q} \right)} \right) $
By solving the expression we get,
$ \Rightarrow a + b + c = pq - pr + qr - qp + rp - rq $
We found that all the given terms are in positive as well in negative form so, all get cancel then we get,
$ a + b + c = 0 $
And we know that,
$ {a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ (Identity)
Here the value of the expression \[a + b + c\] is 0. So after substituting the value in the identity then we get,
$ {a^3} + {b^3} + {c^3} - 3abc = 0 \times \left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $
The value 0 is in multiple with expression of left-hand side make the whole expression 0 so we get the identity as:
$
\Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0\\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc
$
Substituting the value of a, b and c in the identity then we get,
$ \Rightarrow {\left( {p\left( {q - r} \right)} \right)^3} + {\left( {q\left( {r - p} \right)} \right)^3} + {\left( {r\left( {p - q} \right)} \right)^3} = 3p\left( {q - r} \right) \times q\left( {r - p} \right) \times r\left( {p - q} \right)\\
{p^3}{\left( {q - r} \right)^3} + {q^3}{\left( {r - p} \right)^3} + {r^3}{\left( {p - q} \right)^3} = 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $
This is the required factorise form the given expression. $ 3pqr\left( {q - r} \right)\left( {r - p} \right)\left( {p - q} \right) $ are the factors of the given expression.
Note: In this type of problem, we can also find the factorise of the expression by using the long division method still we will get the same result. Using algebraic identities we just compare the expression with identities and expand it.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


