
Face centred cubic crystal lattice of copper has density of $8.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$. Calculate the volume of the unit cell.
Given molar mass of copper is $63.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}$ and Avogadro number ${N_A}$ is $6.022 \times {10^{23}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}$.
Answer
585.6k+ views
Hint: An unit cell that possesses atoms at the centre of all faces of the cube and at all the corners of the crystal lattice is termed as face centred unit cell.
Complete answer:
To calculate the volume of unit cell, we first derive the formula, that is, $V = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}$, then we substitute all the given values to calculate the volume of unit cell.
We know that density is the ratio of mass and volume. Similarly, density of a unit cell can be calculated as follows:
$\begin{array}{c}{\rm{Density}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( d \right) = \dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( M \right)}}{{{\rm{Volume}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( V \right)}}\\d = \dfrac{M}{V}\end{array}$ …… (1)
Now, we take Z as the number of atoms in the unit cell and m is the mass of each atom in the unit cell. Then, mass of atoms in the unit cell would be product of number of atoms and mass of each atom, that is,
$M = Z \times m$ …… (2)
And we know that mass of each atom is equal to $m = \dfrac{{{\rm{Atomic}}\;{\rm{mass}}}}{{{\rm{Avogadro's}}\;{\rm{number}}\left( {{N_A}} \right)}}$.
Now, we substitute the value of m in equation (2).
$M = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A}}}$
Now, we substitute the value of M in equation (1). So, equation (1) becomes,
$d = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times V}}$ …… (3)
Now, we have to find the number of atoms of the unit cell.
In face centred cubic unit cell,
(i) $8\;{\rm{corner}}\;{\rm{atoms}} \times \dfrac{1}{8}\;{\rm{atom}}\;{\rm{per}}\;{\rm{unit}}\;{\rm{cell}} = {\rm{8}} \times \dfrac{1}{8} = 1\;{\rm{atom}}$
(ii) $6\;{\rm{face}}\;{\rm{centred}}\;{\rm{atom}} \times \dfrac{1}{2}\;{\rm{atom}}\;{\rm{per}}\;{\rm{unit}}\;{\rm{cell = 6}} \times \dfrac{1}{2} = 3\;{\rm{atoms}}$
So, In FCC unit cells, the number of atoms is 4.
Now, we rearrange equation (3) to calculate the value of V.
$V = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}$ ……. (4)
Now, we substitute all the values in equation (3). Number of atoms (Z) is equal to 4, density is equal to $8.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$, ${N_A}$ is $6.022 \times {10^{23}}$ and atomic mass of copper is $63.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}$.
$\begin{array}{c}V = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}\\ = \dfrac{{4 \times 63.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}}}{{6.022 \times {{10}^{23}}\;{\rm{mo}}{{\rm{l}}^{ - 1}} \times 8.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}}}\\ = \dfrac{{254}}{{54.17 \times {{10}^{23}}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\\ = 4.7 \times {10^{ - 23}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\end{array}$
Hence, volume of unit cell is $4.7 \times {10^{ - 23}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}$.
Note: Students might confuse the number of atoms of different unit cells. In a cubic unit cell the number of atoms is only one, in the body centered cubic unit the number of atoms is 2 and in the face centered cubic unit, the number of atoms is four.
Complete answer:
To calculate the volume of unit cell, we first derive the formula, that is, $V = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}$, then we substitute all the given values to calculate the volume of unit cell.
We know that density is the ratio of mass and volume. Similarly, density of a unit cell can be calculated as follows:
$\begin{array}{c}{\rm{Density}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( d \right) = \dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( M \right)}}{{{\rm{Volume}}\;{\rm{of}}\;{\rm{unit}}\;{\rm{cell}}\left( V \right)}}\\d = \dfrac{M}{V}\end{array}$ …… (1)
Now, we take Z as the number of atoms in the unit cell and m is the mass of each atom in the unit cell. Then, mass of atoms in the unit cell would be product of number of atoms and mass of each atom, that is,
$M = Z \times m$ …… (2)
And we know that mass of each atom is equal to $m = \dfrac{{{\rm{Atomic}}\;{\rm{mass}}}}{{{\rm{Avogadro's}}\;{\rm{number}}\left( {{N_A}} \right)}}$.
Now, we substitute the value of m in equation (2).
$M = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A}}}$
Now, we substitute the value of M in equation (1). So, equation (1) becomes,
$d = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times V}}$ …… (3)
Now, we have to find the number of atoms of the unit cell.
In face centred cubic unit cell,
(i) $8\;{\rm{corner}}\;{\rm{atoms}} \times \dfrac{1}{8}\;{\rm{atom}}\;{\rm{per}}\;{\rm{unit}}\;{\rm{cell}} = {\rm{8}} \times \dfrac{1}{8} = 1\;{\rm{atom}}$
(ii) $6\;{\rm{face}}\;{\rm{centred}}\;{\rm{atom}} \times \dfrac{1}{2}\;{\rm{atom}}\;{\rm{per}}\;{\rm{unit}}\;{\rm{cell = 6}} \times \dfrac{1}{2} = 3\;{\rm{atoms}}$
So, In FCC unit cells, the number of atoms is 4.
Now, we rearrange equation (3) to calculate the value of V.
$V = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}$ ……. (4)
Now, we substitute all the values in equation (3). Number of atoms (Z) is equal to 4, density is equal to $8.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$, ${N_A}$ is $6.022 \times {10^{23}}$ and atomic mass of copper is $63.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}$.
$\begin{array}{c}V = \dfrac{{Z \times {\rm{Atomic}}\;{\rm{mass}}}}{{{N_A} \times d}}\\ = \dfrac{{4 \times 63.5\;{\rm{g}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}}}{{6.022 \times {{10}^{23}}\;{\rm{mo}}{{\rm{l}}^{ - 1}} \times 8.996\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}}}\\ = \dfrac{{254}}{{54.17 \times {{10}^{23}}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\\ = 4.7 \times {10^{ - 23}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\end{array}$
Hence, volume of unit cell is $4.7 \times {10^{ - 23}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}$.
Note: Students might confuse the number of atoms of different unit cells. In a cubic unit cell the number of atoms is only one, in the body centered cubic unit the number of atoms is 2 and in the face centered cubic unit, the number of atoms is four.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

Sketch the electric field lines in case of an electric class 12 physics CBSE

