
How do you express $\dfrac{1}{{{x^4} + 1}}$ in partial fractions?
Answer
561k+ views
Hint: This problem deals with reducing the given complex fraction into partial fractions. In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.
Complete step-by-step answer:
Given a complex fraction which is as given below:
\[ \Rightarrow \dfrac{1}{{{x^4} + 1}}\]
Now consider the denominator of the above given partial fraction, as shown below:
$ \Rightarrow {x^4} + 1$
Now this a polynomial of degree four, and this can be reduced into factors of polynomials of degree two, as shown below:
$ \Rightarrow {x^4} + 1 = \left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)$
Now considering the given complex fraction as given below:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{1}{{\left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
Now splitting the fraction on the right hand side of the equation, as shown:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{Ax + B}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{Cx + D}}{{\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
Now simplifying the right hand side of the equation:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{Ax + B\left( {{x^2} + \sqrt 2 x + 1} \right) + Cx + D\left( {{x^2} - \sqrt 2 x + 1} \right)}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
We know that denominators are equal, now equating the numerators, as shown:
\[ \Rightarrow \left( {Ax + B} \right)\left( {{x^2} + \sqrt 2 x + 1} \right) + \left( {Cx + D} \right)\left( {{x^2} - \sqrt 2 x + 1} \right) = 1\]
\[ \Rightarrow A{x^3} + \sqrt 2 A{x^2} + Ax + B{x^2} + \sqrt 2 Bx + B + C{x^3} - \sqrt 2 C{x^2} + Cx + D{x^2} - \sqrt 2 Dx + D = 1\]
Now grouping the like terms and the unlike terms together:
\[ \Rightarrow \left( {A + C} \right){x^3} + \left( {\sqrt 2 A + B - \sqrt 2 C + D} \right){x^2} + \left( {A + \sqrt 2 B + C - \sqrt 2 D} \right)x + \left( {B + D} \right) = 1\]
Here on the right hand side, there is no ${x^3}$ term or ${x^2}$ term or an $x$ term, only a constant which is 1.
Hence equating all the coefficients of ${x^3}$ term,${x^2}$ term and $x$ term to zero:
$ \Rightarrow A + C = 0$
\[ \Rightarrow \sqrt 2 A + B - \sqrt 2 C + D = 0\]
$ \Rightarrow A + \sqrt 2 B + C - \sqrt 2 D = 0$
$ \Rightarrow B + D = 1$
Now we have four equations and four variables, hence solving for the values of $A,B,C$ and $D$:
$ \Rightarrow A = \dfrac{{ - 1}}{{2\sqrt 2 }},B = \dfrac{1}{2},C = \dfrac{1}{{2\sqrt 2 }},D = \dfrac{1}{2}$
Now substituting the values of $A,B,C$ and $D$ in the partial fractions as shown:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{\dfrac{{ - 1}}{{2\sqrt 2 }}x + \dfrac{1}{2}}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{\dfrac{1}{{2\sqrt 2 }}x + \dfrac{1}{2}}}{{\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
\[ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{ - \sqrt 2 x + 2}}{{4\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{\sqrt 2 x + 2}}{{4\left( {{x^2} + \sqrt 2 x + 1} \right)}}\]
Note:
Please note that partial fractions can only be done if the degree of the numerator is strictly less than the degree of the denominator. Partial fractions are a way of breaking apart fractions with polynomials in them. The process of taking a rational expression and decomposing it into simpler rational expressions that we can add or subtract to get the original rational expression is called partial fraction decomposition.
Complete step-by-step answer:
Given a complex fraction which is as given below:
\[ \Rightarrow \dfrac{1}{{{x^4} + 1}}\]
Now consider the denominator of the above given partial fraction, as shown below:
$ \Rightarrow {x^4} + 1$
Now this a polynomial of degree four, and this can be reduced into factors of polynomials of degree two, as shown below:
$ \Rightarrow {x^4} + 1 = \left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)$
Now considering the given complex fraction as given below:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{1}{{\left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
Now splitting the fraction on the right hand side of the equation, as shown:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{Ax + B}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{Cx + D}}{{\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
Now simplifying the right hand side of the equation:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{Ax + B\left( {{x^2} + \sqrt 2 x + 1} \right) + Cx + D\left( {{x^2} - \sqrt 2 x + 1} \right)}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
We know that denominators are equal, now equating the numerators, as shown:
\[ \Rightarrow \left( {Ax + B} \right)\left( {{x^2} + \sqrt 2 x + 1} \right) + \left( {Cx + D} \right)\left( {{x^2} - \sqrt 2 x + 1} \right) = 1\]
\[ \Rightarrow A{x^3} + \sqrt 2 A{x^2} + Ax + B{x^2} + \sqrt 2 Bx + B + C{x^3} - \sqrt 2 C{x^2} + Cx + D{x^2} - \sqrt 2 Dx + D = 1\]
Now grouping the like terms and the unlike terms together:
\[ \Rightarrow \left( {A + C} \right){x^3} + \left( {\sqrt 2 A + B - \sqrt 2 C + D} \right){x^2} + \left( {A + \sqrt 2 B + C - \sqrt 2 D} \right)x + \left( {B + D} \right) = 1\]
Here on the right hand side, there is no ${x^3}$ term or ${x^2}$ term or an $x$ term, only a constant which is 1.
Hence equating all the coefficients of ${x^3}$ term,${x^2}$ term and $x$ term to zero:
$ \Rightarrow A + C = 0$
\[ \Rightarrow \sqrt 2 A + B - \sqrt 2 C + D = 0\]
$ \Rightarrow A + \sqrt 2 B + C - \sqrt 2 D = 0$
$ \Rightarrow B + D = 1$
Now we have four equations and four variables, hence solving for the values of $A,B,C$ and $D$:
$ \Rightarrow A = \dfrac{{ - 1}}{{2\sqrt 2 }},B = \dfrac{1}{2},C = \dfrac{1}{{2\sqrt 2 }},D = \dfrac{1}{2}$
Now substituting the values of $A,B,C$ and $D$ in the partial fractions as shown:
$ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{\dfrac{{ - 1}}{{2\sqrt 2 }}x + \dfrac{1}{2}}}{{\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{\dfrac{1}{{2\sqrt 2 }}x + \dfrac{1}{2}}}{{\left( {{x^2} + \sqrt 2 x + 1} \right)}}$
\[ \Rightarrow \dfrac{1}{{{x^4} + 1}} = \dfrac{{ - \sqrt 2 x + 2}}{{4\left( {{x^2} - \sqrt 2 x + 1} \right)}} + \dfrac{{\sqrt 2 x + 2}}{{4\left( {{x^2} + \sqrt 2 x + 1} \right)}}\]
Note:
Please note that partial fractions can only be done if the degree of the numerator is strictly less than the degree of the denominator. Partial fractions are a way of breaking apart fractions with polynomials in them. The process of taking a rational expression and decomposing it into simpler rational expressions that we can add or subtract to get the original rational expression is called partial fraction decomposition.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

