
Express \[2\hat i - \hat j + 3\hat k\] as the sum of a vector parallel and a vector perpendicular to \[2\hat i + 4\hat j - 2\hat k\].
Answer
591.9k+ views
Hint: Let us consider two vectors \[\overrightarrow A ,\overrightarrow B \]as two parallel vectors. Then they are scalar multiple of one another.
That is, \[\overrightarrow A = k\overrightarrow B \] or\[\overrightarrow B = c\overrightarrow A \], where k and c are scalar constant.
Let us consider two vectors\[\overrightarrow A ,\overrightarrow B \]. They are called perpendicular vector if and only if \[\overrightarrow A .\overrightarrow B = 0\]
Complete step by step solution:
Let us consider, \[\overrightarrow A = 2\hat i - \hat j + 3\hat k\] and \[\overrightarrow B = 2\hat i + 4\hat j - 2\hat k\]
According to the problem we have to represent \[\overrightarrow A = 2\hat i - \hat j + 3\hat k\] as the sum of two vectors which are vector parallel and a vector perpendicular to\[\overrightarrow B = 2\hat i + 4\hat j - 2\hat k\].
Let us consider, \[\overrightarrow A = \overrightarrow C + \overrightarrow D \] where, \[\overrightarrow C \] is perpendicular to \[\overrightarrow B \]and \[\overrightarrow D \]is parallel to\[\overrightarrow B \].
So, from the given hint we have, \[\overrightarrow {C.} \overrightarrow B = 0\] and \[\overrightarrow D = \alpha \overrightarrow B \] for some constant\[\alpha \].
That is \[\overrightarrow A \]can be written as \[\overrightarrow A = \overrightarrow C + \alpha \overrightarrow B \]… (1)
Let us multiply \[\overrightarrow B \]on both sides of the equation we get,
\[\overrightarrow B \overrightarrow {.A} = \overrightarrow B .\overrightarrow C + \alpha \overrightarrow B .\overrightarrow B \]… (2)
Here \[\overrightarrow B \overrightarrow {.A} = (2\hat i - \hat j + 3\hat k).(2\hat i + 4\hat j - 2\hat k) = 4 - 4 - 6\]
\[\overrightarrow B .\overrightarrow B = (2\hat i + 4\hat j - 2\hat k).(2\hat i + 4\hat j - 2\hat k) = 4 + 16 + 4\]
Also \[\overrightarrow {C.} \overrightarrow B = 0\]
Substitute the values we have found in equation (2) we get,
\[4 - 4 - 6 = 0 + \alpha (16 + 4 + 4)\]
Let us solve the above equation to find \[\alpha \]we get,
\[\alpha = \dfrac{{ - 6}}{{24}} = \dfrac{{ - 1}}{4}\]
Let us consider, \[\overrightarrow C = x\hat i + y\hat j + z\hat k\]
Now substitute the values of \[\alpha = \dfrac{{ - 1}}{4}\] in (1) we get,
\[2\hat i - \hat j + 3\hat k = \dfrac{{ - 1}}{4}(2\hat i + 4\hat j - 2\hat k) + (x\hat i + y\hat j + z\hat k)\]
Let us take the common terms on right hand side,
\[2\hat i - \hat j + 3\hat k = (x - \dfrac{1}{2})\hat i + (y - 1)\hat j + (z + \dfrac{1}{2})\hat k\]
Let us equate the coefficient of the same components of the vectors in the above equation we have,
\[2 = - \dfrac{1}{2} + x\]; \[ - 1 = - 1 + y\]; \[3 = \dfrac{1}{2} + z\]
Let us solve the three equations we have,
\[x = \dfrac{5}{2};y = 0;z = \dfrac{5}{2}\]
So, \[\overrightarrow C = \dfrac{5}{2}\hat i + \dfrac{5}{2}\hat k\]
$\therefore$The sum of required two vectors is \[2\hat i - \hat j + 3\hat k = \dfrac{{ - 1}}{4}(2\hat i + 4\hat j - 2\hat k) + (\dfrac{5}{2}\hat i + \dfrac{5}{2}\hat k)\]
Note:
Let us consider two vectors \[\overrightarrow A ,\overrightarrow B \]. Then the dot product of them is \[\overrightarrow A .\overrightarrow B = \left| A \right|.\left| B \right|.\cos \theta \]. Here \[\theta \] is the angle between them. In vector \[\hat i,\hat j,\hat k\] are the unit vectors of the axes X, Y, Z respectively.
Also, we must be careful that in dot product the resultant is scalar whereas in cross-product the resultant is a vector. Here in dot product, we must multiply the coefficients of each vector but in cross-product, we form a determinant and solve it.
That is, \[\overrightarrow A = k\overrightarrow B \] or\[\overrightarrow B = c\overrightarrow A \], where k and c are scalar constant.
Let us consider two vectors\[\overrightarrow A ,\overrightarrow B \]. They are called perpendicular vector if and only if \[\overrightarrow A .\overrightarrow B = 0\]
Complete step by step solution:
Let us consider, \[\overrightarrow A = 2\hat i - \hat j + 3\hat k\] and \[\overrightarrow B = 2\hat i + 4\hat j - 2\hat k\]
According to the problem we have to represent \[\overrightarrow A = 2\hat i - \hat j + 3\hat k\] as the sum of two vectors which are vector parallel and a vector perpendicular to\[\overrightarrow B = 2\hat i + 4\hat j - 2\hat k\].
Let us consider, \[\overrightarrow A = \overrightarrow C + \overrightarrow D \] where, \[\overrightarrow C \] is perpendicular to \[\overrightarrow B \]and \[\overrightarrow D \]is parallel to\[\overrightarrow B \].
So, from the given hint we have, \[\overrightarrow {C.} \overrightarrow B = 0\] and \[\overrightarrow D = \alpha \overrightarrow B \] for some constant\[\alpha \].
That is \[\overrightarrow A \]can be written as \[\overrightarrow A = \overrightarrow C + \alpha \overrightarrow B \]… (1)
Let us multiply \[\overrightarrow B \]on both sides of the equation we get,
\[\overrightarrow B \overrightarrow {.A} = \overrightarrow B .\overrightarrow C + \alpha \overrightarrow B .\overrightarrow B \]… (2)
Here \[\overrightarrow B \overrightarrow {.A} = (2\hat i - \hat j + 3\hat k).(2\hat i + 4\hat j - 2\hat k) = 4 - 4 - 6\]
\[\overrightarrow B .\overrightarrow B = (2\hat i + 4\hat j - 2\hat k).(2\hat i + 4\hat j - 2\hat k) = 4 + 16 + 4\]
Also \[\overrightarrow {C.} \overrightarrow B = 0\]
Substitute the values we have found in equation (2) we get,
\[4 - 4 - 6 = 0 + \alpha (16 + 4 + 4)\]
Let us solve the above equation to find \[\alpha \]we get,
\[\alpha = \dfrac{{ - 6}}{{24}} = \dfrac{{ - 1}}{4}\]
Let us consider, \[\overrightarrow C = x\hat i + y\hat j + z\hat k\]
Now substitute the values of \[\alpha = \dfrac{{ - 1}}{4}\] in (1) we get,
\[2\hat i - \hat j + 3\hat k = \dfrac{{ - 1}}{4}(2\hat i + 4\hat j - 2\hat k) + (x\hat i + y\hat j + z\hat k)\]
Let us take the common terms on right hand side,
\[2\hat i - \hat j + 3\hat k = (x - \dfrac{1}{2})\hat i + (y - 1)\hat j + (z + \dfrac{1}{2})\hat k\]
Let us equate the coefficient of the same components of the vectors in the above equation we have,
\[2 = - \dfrac{1}{2} + x\]; \[ - 1 = - 1 + y\]; \[3 = \dfrac{1}{2} + z\]
Let us solve the three equations we have,
\[x = \dfrac{5}{2};y = 0;z = \dfrac{5}{2}\]
So, \[\overrightarrow C = \dfrac{5}{2}\hat i + \dfrac{5}{2}\hat k\]
$\therefore$The sum of required two vectors is \[2\hat i - \hat j + 3\hat k = \dfrac{{ - 1}}{4}(2\hat i + 4\hat j - 2\hat k) + (\dfrac{5}{2}\hat i + \dfrac{5}{2}\hat k)\]
Note:
Let us consider two vectors \[\overrightarrow A ,\overrightarrow B \]. Then the dot product of them is \[\overrightarrow A .\overrightarrow B = \left| A \right|.\left| B \right|.\cos \theta \]. Here \[\theta \] is the angle between them. In vector \[\hat i,\hat j,\hat k\] are the unit vectors of the axes X, Y, Z respectively.
Also, we must be careful that in dot product the resultant is scalar whereas in cross-product the resultant is a vector. Here in dot product, we must multiply the coefficients of each vector but in cross-product, we form a determinant and solve it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

