
Explain the following:
Low spin octahedral complexes of nickel are not known.
Answer
462.9k+ views
Hint :The oxidation state of the metal likewise decides how little or huge $ \Delta $ is. The higher the oxidation state of the metal, the more grounded the ligand field that is made. If there are two metals with a similar d electron arrangement, the one with the higher oxidation state is bound to be low spin than the one with the lower oxidation state.
Complete Step By Step Answer:
Octahedral complexes have a coordination number of 6, implying that there are six spots around the metal where ligands can attack. Interaction between the electrons of the ligands and those of the metal place produce a crystal field splitting where the $ d{z^2} $ and $ d{x^2} - d{y^2} $ orbitals high in energy, while the other three orbitals of $ dxz,dzy $ , and $ dyz $ , are lower in energy.
Electronic configuration of $ N{i^{2 + }} $ is $ 1{s^2},2{s^2},2{p^6},4{s^0}3{d^8} $ .
Electrons present in $ 3d $ orbital of $ N{i^{2 + }} $ should pair up with each other for the formation of low spin octahedral complexes. So, this will result in one empty $ d $ orbital and $ {d^2}s{p^3} $ hybridization for nickel complexes is not possible.
Note :
remember usually the field strength of the ligand, which is additionally determined by large or small $ \Delta $ , decides if an octahedral complex is high or low spin. This is the place where we utilize the spectro chemical arrangement to decide ligand strength. Strong field ligands, as $ C{N^ - } $ and $ N{O^{2 - }} $ , increment $ \Delta $ which brings about low spin. While feeble field ligands, similar to $ {I^ - } $ and $ C{l^ - } $ , decline the $ \Delta $ which brings about high spin.
Complete Step By Step Answer:
Octahedral complexes have a coordination number of 6, implying that there are six spots around the metal where ligands can attack. Interaction between the electrons of the ligands and those of the metal place produce a crystal field splitting where the $ d{z^2} $ and $ d{x^2} - d{y^2} $ orbitals high in energy, while the other three orbitals of $ dxz,dzy $ , and $ dyz $ , are lower in energy.
Electronic configuration of $ N{i^{2 + }} $ is $ 1{s^2},2{s^2},2{p^6},4{s^0}3{d^8} $ .
Electrons present in $ 3d $ orbital of $ N{i^{2 + }} $ should pair up with each other for the formation of low spin octahedral complexes. So, this will result in one empty $ d $ orbital and $ {d^2}s{p^3} $ hybridization for nickel complexes is not possible.
Note :
remember usually the field strength of the ligand, which is additionally determined by large or small $ \Delta $ , decides if an octahedral complex is high or low spin. This is the place where we utilize the spectro chemical arrangement to decide ligand strength. Strong field ligands, as $ C{N^ - } $ and $ N{O^{2 - }} $ , increment $ \Delta $ which brings about low spin. While feeble field ligands, similar to $ {I^ - } $ and $ C{l^ - } $ , decline the $ \Delta $ which brings about high spin.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
