
Expand the following: \[{\left( {4a - 2b - 3c} \right)^2}\]
Answer
571.5k+ views
Hint: We will solve this question by using the formula of
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], where \[x\], \[y\] and \[z\] are variables.
Complete step-by-step solution:
Step 1: By using the formula of \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], we can expand the given expression as below:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} + \left( {2 \times \left( {4a} \right) \times \left( { - 2b} \right)} \right) + \left( {2 \times \left( { - 2b} \right) \times \left( { - 3c} \right)} \right) + \left( {2 \times \left( { - 3c} \right) \times \left( {4a} \right)} \right)\]
Where \[x = 4a\], \[y = \left( { - 2b} \right)\] and \[z = \left( { - 3c} \right)\].
Step 2: By opening the brackets and multiplying the terms we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} - 16ab + 12bc - 24ca\] ……………………. (1)
By replacing the terms as
\[{\left( {4a} \right)^2} = 16{a^2}\], \[{\left( { - 2b} \right)^2} = 4{b^2}\] and \[{\left( { - 3c} \right)^2} = 9{c^2}\] in the above expression (1), we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\]
\[\because \] The answer is \[{\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\].
Note: Students should remember some basic formulas for solving these types of questions. Some of them are mentioned below for better understanding:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\]
The proof of the formula \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\] which we have also used in the above solution is given below:
By writing the term \[{\left( {x + y + z} \right)^2}\] as given below:
\[{\left( {x + y + z} \right)^2} = {\left( {\left( {x + y} \right) + z} \right)^2}\]
By using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {\left( {x + y} \right)^2} + {z^2} + 2 \times \left( {x + y} \right) \times z\] , where \[a = \left( {x + y} \right)\] and \[b = z\].
Now by again using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2 \times \left( {x + y} \right) \times z\]
Simplifying the above expression by doing multiplication inside the brackets we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2xz + 2yz\]
We can write the above expression as:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz\]
Hence proved.
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], where \[x\], \[y\] and \[z\] are variables.
Complete step-by-step solution:
Step 1: By using the formula of \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], we can expand the given expression as below:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} + \left( {2 \times \left( {4a} \right) \times \left( { - 2b} \right)} \right) + \left( {2 \times \left( { - 2b} \right) \times \left( { - 3c} \right)} \right) + \left( {2 \times \left( { - 3c} \right) \times \left( {4a} \right)} \right)\]
Where \[x = 4a\], \[y = \left( { - 2b} \right)\] and \[z = \left( { - 3c} \right)\].
Step 2: By opening the brackets and multiplying the terms we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} - 16ab + 12bc - 24ca\] ……………………. (1)
By replacing the terms as
\[{\left( {4a} \right)^2} = 16{a^2}\], \[{\left( { - 2b} \right)^2} = 4{b^2}\] and \[{\left( { - 3c} \right)^2} = 9{c^2}\] in the above expression (1), we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\]
\[\because \] The answer is \[{\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\].
Note: Students should remember some basic formulas for solving these types of questions. Some of them are mentioned below for better understanding:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\]
The proof of the formula \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\] which we have also used in the above solution is given below:
By writing the term \[{\left( {x + y + z} \right)^2}\] as given below:
\[{\left( {x + y + z} \right)^2} = {\left( {\left( {x + y} \right) + z} \right)^2}\]
By using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {\left( {x + y} \right)^2} + {z^2} + 2 \times \left( {x + y} \right) \times z\] , where \[a = \left( {x + y} \right)\] and \[b = z\].
Now by again using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2 \times \left( {x + y} \right) \times z\]
Simplifying the above expression by doing multiplication inside the brackets we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2xz + 2yz\]
We can write the above expression as:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz\]
Hence proved.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

Define development

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

Give 5 examples of refraction of light in daily life

The voting age has been reduced from 21 to 18 by the class 9 social science CBSE

