
Expand the following: \[{\left( {4a - 2b - 3c} \right)^2}\]
Answer
557.7k+ views
Hint: We will solve this question by using the formula of
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], where \[x\], \[y\] and \[z\] are variables.
Complete step-by-step solution:
Step 1: By using the formula of \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], we can expand the given expression as below:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} + \left( {2 \times \left( {4a} \right) \times \left( { - 2b} \right)} \right) + \left( {2 \times \left( { - 2b} \right) \times \left( { - 3c} \right)} \right) + \left( {2 \times \left( { - 3c} \right) \times \left( {4a} \right)} \right)\]
Where \[x = 4a\], \[y = \left( { - 2b} \right)\] and \[z = \left( { - 3c} \right)\].
Step 2: By opening the brackets and multiplying the terms we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} - 16ab + 12bc - 24ca\] ……………………. (1)
By replacing the terms as
\[{\left( {4a} \right)^2} = 16{a^2}\], \[{\left( { - 2b} \right)^2} = 4{b^2}\] and \[{\left( { - 3c} \right)^2} = 9{c^2}\] in the above expression (1), we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\]
\[\because \] The answer is \[{\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\].
Note: Students should remember some basic formulas for solving these types of questions. Some of them are mentioned below for better understanding:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\]
The proof of the formula \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\] which we have also used in the above solution is given below:
By writing the term \[{\left( {x + y + z} \right)^2}\] as given below:
\[{\left( {x + y + z} \right)^2} = {\left( {\left( {x + y} \right) + z} \right)^2}\]
By using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {\left( {x + y} \right)^2} + {z^2} + 2 \times \left( {x + y} \right) \times z\] , where \[a = \left( {x + y} \right)\] and \[b = z\].
Now by again using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2 \times \left( {x + y} \right) \times z\]
Simplifying the above expression by doing multiplication inside the brackets we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2xz + 2yz\]
We can write the above expression as:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz\]
Hence proved.
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], where \[x\], \[y\] and \[z\] are variables.
Complete step-by-step solution:
Step 1: By using the formula of \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\], we can expand the given expression as below:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} + \left( {2 \times \left( {4a} \right) \times \left( { - 2b} \right)} \right) + \left( {2 \times \left( { - 2b} \right) \times \left( { - 3c} \right)} \right) + \left( {2 \times \left( { - 3c} \right) \times \left( {4a} \right)} \right)\]
Where \[x = 4a\], \[y = \left( { - 2b} \right)\] and \[z = \left( { - 3c} \right)\].
Step 2: By opening the brackets and multiplying the terms we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = {\left( {4a} \right)^2} + {\left( { - 2b} \right)^2} + {\left( { - 3c} \right)^2} - 16ab + 12bc - 24ca\] ……………………. (1)
By replacing the terms as
\[{\left( {4a} \right)^2} = 16{a^2}\], \[{\left( { - 2b} \right)^2} = 4{b^2}\] and \[{\left( { - 3c} \right)^2} = 9{c^2}\] in the above expression (1), we get:
\[ \Rightarrow {\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\]
\[\because \] The answer is \[{\left( {4a - 2b - 3c} \right)^2} = 16{a^2} + 4{b^2} + 9{c^2} - 16ab + 12bc - 24ca\].
Note: Students should remember some basic formulas for solving these types of questions. Some of them are mentioned below for better understanding:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\]
The proof of the formula \[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2zx\] which we have also used in the above solution is given below:
By writing the term \[{\left( {x + y + z} \right)^2}\] as given below:
\[{\left( {x + y + z} \right)^2} = {\left( {\left( {x + y} \right) + z} \right)^2}\]
By using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {\left( {x + y} \right)^2} + {z^2} + 2 \times \left( {x + y} \right) \times z\] , where \[a = \left( {x + y} \right)\] and \[b = z\].
Now by again using the formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the above expression, we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2 \times \left( {x + y} \right) \times z\]
Simplifying the above expression by doing multiplication inside the brackets we get:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + 2xy + {z^2} + 2xz + 2yz\]
We can write the above expression as:
\[ \Rightarrow {\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz\]
Hence proved.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

